The Earth–Climate System Model(ECSM)is an important platform for multi-disciplinary and multi-sphere integration research,and its development is at the frontier of international geosciences,especially in the field of...The Earth–Climate System Model(ECSM)is an important platform for multi-disciplinary and multi-sphere integration research,and its development is at the frontier of international geosciences,especially in the field of global change.The research and development(R&D)of ECSM in China began in the 1980 s and have achieved great progress.In China,ECSMs are now mainly developed at the Chinese Academy of Sciences,ministries,and universities.Following a brief review of the development history of Chinese ECSMs,this paper summarized the technical characteristics of nine Chinese ECSMs participating in the Coupled Model Intercomparison Project Phase 6 and preliminarily assessed the basic performances of four Chinese models in simulating the global climate and the climate in East Asia.The projected changes of global precipitation and surface air temperature and the associated relationship with the equilibrium climate sensitivity under four shared socioeconomic path scenarios were also discussed.Finally,combined with the international situation,from the perspective of further improvement,eight directions were proposed for the future development of Chinese ECSMs.展开更多
An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are ass...An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interan-nual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change pro jection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface tem-perature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Ni-no-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the perfor-mances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific mon-soon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways pro jection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.展开更多
基金Supported by the International Partnership Program of Chinese Academy of Sciences(134111KYSB20160031)National Natural Science Foundation of China(41875132).
文摘The Earth–Climate System Model(ECSM)is an important platform for multi-disciplinary and multi-sphere integration research,and its development is at the frontier of international geosciences,especially in the field of global change.The research and development(R&D)of ECSM in China began in the 1980 s and have achieved great progress.In China,ECSMs are now mainly developed at the Chinese Academy of Sciences,ministries,and universities.Following a brief review of the development history of Chinese ECSMs,this paper summarized the technical characteristics of nine Chinese ECSMs participating in the Coupled Model Intercomparison Project Phase 6 and preliminarily assessed the basic performances of four Chinese models in simulating the global climate and the climate in East Asia.The projected changes of global precipitation and surface air temperature and the associated relationship with the equilibrium climate sensitivity under four shared socioeconomic path scenarios were also discussed.Finally,combined with the international situation,from the perspective of further improvement,eight directions were proposed for the future development of Chinese ECSMs.
基金Supported jointly by the National Natural Science Foundation of China(41125017 and 41330423)National(Key) Basic Research and Development(973) Program of China(2010CB951904)Public Science and Technology Research Project Funds of Ocean(201105019-3)
文摘An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interan-nual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change pro jection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface tem-perature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Ni-no-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the perfor-mances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific mon-soon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways pro jection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.