期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
中文微博情感分析方法研究 被引量:1
1
作者 王银 吴新玲 《广东技术师范学院学报》 2014年第3期63-68,共6页
微博情感分析是当今情感分析的一大研究热点,中文微博情感分析按照处理层面的不同可以分为主题无关和主题相关分析,分析方法主要分为两类,一是基于情感词典的方法,另一类是基于机器学习的方法.本文对目前中文微博情感分析的主要流程和... 微博情感分析是当今情感分析的一大研究热点,中文微博情感分析按照处理层面的不同可以分为主题无关和主题相关分析,分析方法主要分为两类,一是基于情感词典的方法,另一类是基于机器学习的方法.本文对目前中文微博情感分析的主要流程和处理方法进行了探讨,对两类方法的特点及其研究现状进行了分析、比较,对不能完全准确进行情感分类的主要原因进行了归纳总结,为情感分析方法的进一步研究提供了参考方向. 展开更多
关键词 中文微博 情感分析 情感词典 机器学习
下载PDF
中文微博情感分析研究综述 被引量:80
2
作者 周胜臣 瞿文婷 +2 位作者 石英子 施询之 孙韵辰 《计算机应用与软件》 CSCD 北大核心 2013年第3期161-164,181,共5页
随着微博的风靡,与之相关的研究得到学术界和工商界的广泛关注。针对中文微博情感分析的研究进行综述。将中文微博文本情感分析分为三类任务:文本预处理、情感信息抽取和情感分类,对各自的研究方法和进展进行总结。其中情感信息抽取分... 随着微博的风靡,与之相关的研究得到学术界和工商界的广泛关注。针对中文微博情感分析的研究进行综述。将中文微博文本情感分析分为三类任务:文本预处理、情感信息抽取和情感分类,对各自的研究方法和进展进行总结。其中情感信息抽取分为情感词、主题和关系的抽取,将微博主观文本情感分类方法归结为基于语义词典的情感计算和基于机器学习的情感分类。此外,从微博网站数据构成的角度出发,对情感分析做了延伸分析。最后总结微博情感分析的研究现状,并提出今后的研究方向。 展开更多
关键词 中文微博 情感分析 情感信息抽取 情感分类
下载PDF
面向中文微博情感分析的多特征融合方法研究 被引量:1
3
作者 宋沛玉 邢延 《电子世界》 2018年第2期20-21,25,共3页
基于中文微博的情感分析一直备受业界关注,但中文微博特征稀疏,语言不规范等特点严重影响了情感分析的质量,基于此,本文提出了一种融合多种特征进行中文微博情感分析的方法,包括基于情感词典的分值特征,基于机器学习的概率特征以及基于... 基于中文微博的情感分析一直备受业界关注,但中文微博特征稀疏,语言不规范等特点严重影响了情感分析的质量,基于此,本文提出了一种融合多种特征进行中文微博情感分析的方法,包括基于情感词典的分值特征,基于机器学习的概率特征以及基于深度学习的词向量特征。并通过对照实验验证了该方法的有效性。 展开更多
关键词 中文微博 特征融合 情感词典 机器学习 深度学习
下载PDF
大规模情感词典的构建及其在情感分类中的应用 被引量:51
4
作者 赵妍妍 秦兵 +1 位作者 石秋慧 刘挺 《中文信息学报》 CSCD 北大核心 2017年第2期187-193,共7页
以微博为代表的社会媒体的飞速发展为情感分析方向带来巨大的资源,同时也对情感分析算法的性能提出了更大的挑战。其中,现有的情感词典尤其是中文情感词典规模不足是影响情感分析性能的一个重要因素。为此,该文基于海量的微博数据,使用... 以微博为代表的社会媒体的飞速发展为情感分析方向带来巨大的资源,同时也对情感分析算法的性能提出了更大的挑战。其中,现有的情感词典尤其是中文情感词典规模不足是影响情感分析性能的一个重要因素。为此,该文基于海量的微博数据,使用简单的文本统计算法,构建了一个十万词语/词组的大规模情感词典。我们以情感分析的基础任务——情感分类为例,将大规模情感词典作为特征用于该任务上,实验结果表明大规模词典有助于情感分类性能的提高。 展开更多
关键词 情感词典 情感分析 情感分类 微博
下载PDF
中文微博情感分析研究与实现 被引量:28
5
作者 李勇敢 周学广 +1 位作者 孙艳 张焕国 《软件学报》 EI CSCD 北大核心 2017年第12期3183-3205,共23页
中文微博的大数据、指数传播和跨媒体等特性,决定了依托人工方式监控和处理中文微博是不现实的,迫切需要依托计算机开展中文微博情感自动分析研究.该项研究可分为3个任务:中文微博观点句识别、情感倾向性分类和情感要素抽取.为完成上述... 中文微博的大数据、指数传播和跨媒体等特性,决定了依托人工方式监控和处理中文微博是不现实的,迫切需要依托计算机开展中文微博情感自动分析研究.该项研究可分为3个任务:中文微博观点句识别、情感倾向性分类和情感要素抽取.为完成上述任务,研制了一个评测系统:通过构建多级词库、制定成词规则、开展串频统计等给出一种基于规则和统计的新词识别方法,在情感词和评价对象的依存模式的基础上给出基于词语特征的观点句识别算法;以词序流表示文本的LDA-Collocation模型,采用吉布斯抽样法推导了算法,实现中文微博情感倾向性自动分类;针对中文微博情感要素抽取召回率较低的问题,利用依存关系分析理论,按主语类和宾语类把依存模式分为两类,建立了6个优先级的评价对象和情感词汇的依存模式,通过评价对象归并算法实现计算机自动抽取情感要素.实验包括两个部分:一是参加NLP&CC2012的公开评测,所提方法在微博观点句识别任务中的准确率为第2,在中文微博情感要素抽取任务中的准确率和F值均为第2,验证了该算法的实用性;二是在分析公开评测结果的基础上,分别比较了参加公开评测的各类算法在处理中文微博情感分析时的效率,给出了相关结论. 展开更多
关键词 中文微博 情感分析 依存分析 情感倾向性分类 情感要素抽取 无监督主题情感模型
下载PDF
多策略中文微博细粒度情绪分析研究 被引量:23
6
作者 欧阳纯萍 阳小华 +3 位作者 雷龙艳 徐强 余颖 刘志明 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期67-72,共6页
针对中文微博用户的情绪分析问题,提出一种基于多策略融合的细粒度情绪分析方法。首先采用朴素贝叶斯算法对微博的有无情绪分类问题进行研究,然后构建有情绪微博的21维特征向量,最后采用SVM和KNN算法对微博进行细粒度情绪分析。以新浪... 针对中文微博用户的情绪分析问题,提出一种基于多策略融合的细粒度情绪分析方法。首先采用朴素贝叶斯算法对微博的有无情绪分类问题进行研究,然后构建有情绪微博的21维特征向量,最后采用SVM和KNN算法对微博进行细粒度情绪分析。以新浪微博作为实验对象,结果表明多策略集成方法好于单一分类算法。在多策略集成方法中,"NB+SVM"方法略优于"NB+KNN"方法。 展开更多
关键词 细粒度情绪分析 中文微博 朴素贝叶斯 SVM KNN
下载PDF
基于多文本特征融合的中文微博的立场检测 被引量:23
7
作者 奠雨洁 金琴 吴慧敏 《计算机工程与应用》 CSCD 北大核心 2017年第21期77-84,共8页
微博立场检测是判断微博作者对某一个话题的态度是支持、反对或中立。在基于监督学习的分类框架上,扩展并提出基于多文本特征融合的中文微博的立场检测方法。首先探究了基于词频统计的特征(词袋特征(Bag-ofWords,Bo W)、基于同义词典的... 微博立场检测是判断微博作者对某一个话题的态度是支持、反对或中立。在基于监督学习的分类框架上,扩展并提出基于多文本特征融合的中文微博的立场检测方法。首先探究了基于词频统计的特征(词袋特征(Bag-ofWords,Bo W)、基于同义词典的词袋特征、考虑词与立场标签共现关系的特征)和文本深度特征(词向量、字向量)。之后使用支持向量机,随机森林和梯度提升决策树对上述特征进行立场分类。最后,结合所有特征分类器进行后期融合。实验表明,文中提出的特征对于不同话题下的微博立场检测的结果都有提升,且文本深度特征和基于词频统计的特征能够捕捉到文本的不同信息,在立场检测中是互补的。基于本文方法的微博立场检测系统在2016年自然语言处理与中文计算会议(NLPCC2016)的中文微博立场检测评测任务中取得了最好的结果。 展开更多
关键词 立场检测 情感分析 文本特征表示 微博 文本分类
下载PDF
基于长短期记忆多维主题情感倾向性分析模型 被引量:21
8
作者 滕飞 郑超美 李文 《计算机应用》 CSCD 北大核心 2016年第8期2252-2256,共5页
针对中文微博全局性情感倾向分类的准确性不高的问题,提出基于长短期记忆模型的多维主题模型(MT-LSTM)。该模型是一个多层多维序列计算模型,由多维长短期记忆(LSTM)细胞网络组成,适用于处理向量、数组以及更高维度的数据。该模型首先将... 针对中文微博全局性情感倾向分类的准确性不高的问题,提出基于长短期记忆模型的多维主题模型(MT-LSTM)。该模型是一个多层多维序列计算模型,由多维长短期记忆(LSTM)细胞网络组成,适用于处理向量、数组以及更高维度的数据。该模型首先将微博语句分为多个层次进行分析,纵向以三维长短期记忆模型(3D-LSTM)处理词语及义群的情感倾向,横向以多维长短期记忆模型(MD-LSTM)多次处理整条微博的情感倾向;然后根据主题标签的高斯分布判断情感倾向;最后将几次判断结果进行加权得到最终的分类结果。实验结果表明,该算法平均查准率达91%,最高可达96.5%;中性微博查全率高达50%以上。与递归神经网络(RNN)模型相比,该算法F-测量值提升40%以上;与无主题划分的方法相比,细致的主题划分可将F-测量值提升11.9%。所提算法具有较好的综合性能,能够有效提升中文微博情感倾向分析的准确性,同时减少训练数据量,降低匹配计算的复杂度。 展开更多
关键词 中文微博 情感倾向分析 长短期记忆 多层多维模型 主题标签
下载PDF
基于隐主题分析的中文微博话题发现 被引量:19
9
作者 史剑虹 陈兴蜀 王文贤 《计算机应用研究》 CSCD 北大核心 2014年第3期700-704,共5页
针对高维、稀疏的中文微博数据,提出一种多步骤的新闻话题发现方法。首先结合微博的传播特点,选取出不同时间窗口中具有较高新闻价值的微博文本;再利用隐主题模型挖掘微博内容中隐含的主题信息,并在此基础上进行文本聚类;最后使用频繁... 针对高维、稀疏的中文微博数据,提出一种多步骤的新闻话题发现方法。首先结合微博的传播特点,选取出不同时间窗口中具有较高新闻价值的微博文本;再利用隐主题模型挖掘微博内容中隐含的主题信息,并在此基础上进行文本聚类;最后使用频繁项集挖掘技术获取话题关键词集合。该算法能够较好地实现对中文微博数据的降维与话题发现。真实的微博数据集实验结果验证了该方法的有效性。 展开更多
关键词 中文微博 话题发现 隐主题模型 文本聚类 频繁项集挖掘
下载PDF
中文微博情感词提取:N-Gram为特征的分类方法 被引量:13
10
作者 刘德喜 聂建云 +3 位作者 张晶 刘晓华 万常选 廖国琼 《中文信息学报》 CSCD 北大核心 2016年第4期193-205,212,共14页
情感词典是文本情感分析的基础资源,但采用手工方式构建工作量大,且覆盖有限。一种可行的途径是从新情感词传播的重要媒介-微博数据-中自动抽取情感词。该文以COAE 2014评测任务3提供的中文微博数据为统计对象,发现传统的基于共现的方法... 情感词典是文本情感分析的基础资源,但采用手工方式构建工作量大,且覆盖有限。一种可行的途径是从新情感词传播的重要媒介-微博数据-中自动抽取情感词。该文以COAE 2014评测任务3提供的中文微博数据为统计对象,发现传统的基于共现的方法,如点互信息等,对中文微博数据中的新情感词发现是无效的。为此,设计一组基于上下文词汇的分类特征,即N-Gram特征,以刻画情感词的用词环境和用词模式,并以已知情感词为训练数据训练分类器,对候选情感词进行分类。实验结果表明,该方法较传统基于共现的方法要好。实验还发现,与英语不同的是,中文情感词通常会以名词词性出现,而基于共现的方法无法有效地区分该类情感词,这是造成其失效的主要原因,而该文提出的分类特征能解决这一问题。 展开更多
关键词 情感词提取 中文微博 分类方法 N-Gram特征
下载PDF
一种基于情感的中文微博话题检测方法 被引量:11
11
作者 方然 苗夺谦 张志飞 《智能系统学报》 CSCD 北大核心 2013年第3期208-213,共6页
针对微博这种特殊的文本形式的话题检测,传统的算法并不能取得很好的效果.为了提高其查全率,根据微博这种带有结构化特点的信息,提出了一种带有情感内容加权的话题检测方法.该方法基于含有负面情感的词语往往携带了更多的信息量这一论点... 针对微博这种特殊的文本形式的话题检测,传统的算法并不能取得很好的效果.为了提高其查全率,根据微博这种带有结构化特点的信息,提出了一种带有情感内容加权的话题检测方法.该方法基于含有负面情感的词语往往携带了更多的信息量这一论点,在现有短文本话题检测的算法中,通过加大含有负面情感的短文本在话题检测中的权重,之后再根据一种基于自查询的聚类方法进行话题聚类,将情感倾向融合到短文本话题检测中.在真实数据集上的实验表明,此方法能有效地进行话题聚类并检测话题,并提高了查全率. 展开更多
关键词 中文微博 话题检测 聚类 情感
下载PDF
基于卷积神经网络的中文微博观点分类 被引量:12
12
作者 廖祥文 张丽瑶 +2 位作者 宋志刚 程学旗 陈国龙 《模式识别与人工智能》 EI CSCD 北大核心 2016年第12期1075-1082,共8页
针对现有中文微博观点分类方法对上下文利用不足、数据表示稀疏和特征依赖于人工设计等问题,提出基于卷积神经网络的中文微博观点分类方法.首先利用交互上下文扩充不同主题下的微博内容,使用低维密集向量初始化微博文本.然后构造卷积神... 针对现有中文微博观点分类方法对上下文利用不足、数据表示稀疏和特征依赖于人工设计等问题,提出基于卷积神经网络的中文微博观点分类方法.首先利用交互上下文扩充不同主题下的微博内容,使用低维密集向量初始化微博文本.然后构造卷积神经网络模型,实现特征抽取和组合.最后基于softmax分类函数估计中文微博观点类别.实验表明,相比基准方法,文中方法在精确度和F1值上的效果更好. 展开更多
关键词 中文微博 观点分类 卷积神经网络
下载PDF
基于主题标签和CRF的中文微博命名实体识别 被引量:12
13
作者 朱颢东 杨立志 +1 位作者 丁温雪 冯嘉美 《华中师范大学学报(自然科学版)》 CAS 北大核心 2018年第3期316-321,共6页
近年来,网络媒体微博的迅速发展,为命名实体的识别研究提供了一种全新的载体.针对中文微博文本短、表达不清、网络化严重等特点,论文提出了一种规则与统计相结合的中文微博命名实体识别方法.该方法首先利用中文微博的主题标签对处理后... 近年来,网络媒体微博的迅速发展,为命名实体的识别研究提供了一种全新的载体.针对中文微博文本短、表达不清、网络化严重等特点,论文提出了一种规则与统计相结合的中文微博命名实体识别方法.该方法首先利用中文微博的主题标签对处理后的数据进行筛选,然后再选取合适的特征模板,并利用条件随机场模型(Conditional random fields,CRF)进行实体识别.为了满足实验要求,该文将传统网页爬虫方法与API接口采集方法相结合进行微博数据采集.实验结果表明,该方法能够有效提高中文微博命名实体的识别效果. 展开更多
关键词 命名实体 中文微博 主题标签 条件随机场
下载PDF
面向中文微博的观点句识别研究 被引量:11
14
作者 丁晟春 孟美任 李霄 《情报学报》 CSSCI 北大核心 2014年第2期175-182,共8页
中文微博包含了用户对热点话题的观点,对其进行观点挖掘可以实现突发事件预警、舆情监控等。目前,微博研究多数基于英文语料,中文微博观点句的挖掘大多混淆在情感挖掘中少量提及,由于中文微博特殊的语体特征,导致传统中文文本观点... 中文微博包含了用户对热点话题的观点,对其进行观点挖掘可以实现突发事件预警、舆情监控等。目前,微博研究多数基于英文语料,中文微博观点句的挖掘大多混淆在情感挖掘中少量提及,由于中文微博特殊的语体特征,导致传统中文文本观点挖掘模型无法取得理想效果。区别于已有的情感挖掘工作,本文依据中文微博的语体特征分析结果选取特征,除了选取情感特征外,还加入主张性动词、语气词、程度副词以及固定词性结构等观点句特征,采用CRFs模型进行观点句识别研究。实验结果表明,仅选取情感特征准确率较高,但召回率仅为32.1%。而加入其他观点句特征后,召回率显著提高到61.8%。该方法应用于2012年中国计算机学会(CCF)组织的“观点句识别”测评任务中,取得了很好的效果。 展开更多
关键词 中文微博 观点挖掘 CRFs模型 观点句识别 语体特征
下载PDF
基于平滑SO-PMI算法的微博情感词典构建方法研究 被引量:10
15
作者 杜锐 朱艳辉 +2 位作者 田海龙 刘璟 马进 《湖南工业大学学报》 2015年第5期77-81,共5页
对现有情感词典在微博情感分类中的适用性进行了分析,针对现有情感词典在微博中情感词覆盖度低的问题,整合现有情感词典资源,构建了一个微博基础情感词典,同时提出了一种基于拉普拉斯平滑的SO-PMI算法对微博基础情感词典中没有收录的情... 对现有情感词典在微博情感分类中的适用性进行了分析,针对现有情感词典在微博中情感词覆盖度低的问题,整合现有情感词典资源,构建了一个微博基础情感词典,同时提出了一种基于拉普拉斯平滑的SO-PMI算法对微博基础情感词典中没有收录的情感词倾向性进行判断,最后利用微博情感词典与拉普拉斯平滑的SO-PMI算法对微博情感词典进行了构建,并对所构建微博情感词典的分类性能进行了实验。实验结果表明,该方法所构建的情感词典在微博情感分类中能达到较好的分类效果。 展开更多
关键词 中文微博 情感词典 情感分类 平滑
下载PDF
基于SVM的中文微博情绪分析研究 被引量:10
16
作者 丁晟春 王颖 李霄 《情报资料工作》 CSSCI 北大核心 2016年第3期28-33,共6页
文章以中文微博为研究对象,结合心理学和自然语言处理,将微博情绪划分为乐、怒、哀、恶、惧五大类。然后在类别划分的基础上,使用情感特征、句式特征、句间特征来表示微博情绪,并借助于SVM模型形成了微博情绪分类模型。最后借助NLP&... 文章以中文微博为研究对象,结合心理学和自然语言处理,将微博情绪划分为乐、怒、哀、恶、惧五大类。然后在类别划分的基础上,使用情感特征、句式特征、句间特征来表示微博情绪,并借助于SVM模型形成了微博情绪分类模型。最后借助NLP&CC 2013的公开评测数据对提出的模型进行了验证,实验结果表明本文所提的方法是有效的。 展开更多
关键词 情绪类别 情绪分析 特征选择 SVM 中文微博
原文传递
基于信息融合的中文微博可信度评估方法 被引量:9
17
作者 高明霞 陈福荣 《计算机应用》 CSCD 北大核心 2016年第8期2071-2075,2081,共6页
针对中文微博信息的特点及这些特点的可测量性和实际任务,系统地梳理了中文微博信息可信度测量指标,并将其进行了谱系化分析,提出一个基于信息融合的中文微博可信度评估框架CCM-IF。首先,为本质不同的三个异构特征:文本内容、信息作者... 针对中文微博信息的特点及这些特点的可测量性和实际任务,系统地梳理了中文微博信息可信度测量指标,并将其进行了谱系化分析,提出一个基于信息融合的中文微博可信度评估框架CCM-IF。首先,为本质不同的三个异构特征:文本内容、信息作者与信息传播使用了不同的度量方式;其次,基于决策层可信度的模糊认知特点,采用了多维证据理论进行特征融合;最后,收集了新浪微博两个真实数据集进行了一系列实验。实验结果表明,与传统信息检索排序方法平滑语言模型(LMJM)相比,CCM-IF符合用户需求的信息占比提高了10%~20%。因此,作为一个静态质量评估指标,CCM-IF可直接用于微博检索排序、垃圾微博过滤等实际任务。 展开更多
关键词 中文微博 可信度 信息融合 四象限法则 证据理论
下载PDF
基于词向量聚类的中文微博产品命名实体识别 被引量:8
18
作者 王洪亮 《兰州理工大学学报》 CAS 北大核心 2017年第1期104-110,共7页
随着微博等社交平台的兴起,如何针对微博数据进行产品命名实体识别成为了自然语言处理领域研究的热点之一,也是实现舆情监督和商业智能的基础.传统的命名实体识别技术没有考虑中文微博口语化、不规范等特点,且忽略了深层语义对命名实体... 随着微博等社交平台的兴起,如何针对微博数据进行产品命名实体识别成为了自然语言处理领域研究的热点之一,也是实现舆情监督和商业智能的基础.传统的命名实体识别技术没有考虑中文微博口语化、不规范等特点,且忽略了深层语义对命名实体识别的重要作用.因此,考虑中文微博的特殊性,提出一种融合全局上下文信息的词向量特征选择方法,分别采用主题模型和神经网络词向量聚类两种方法获取深层语义信息,并结合层叠条件随机场进行中文微博的命名实体识别.实验结果表明,基于词向量聚类的中文微博产品命名实体识别方法取得了较好的效果. 展开更多
关键词 中文微博 命名实体 主题模型 神经网络 词向量
下载PDF
融合BERT-BiGRU和多尺度CNN的中文微博情感分析 被引量:3
19
作者 林伟 陈雁 《中国电子科学研究院学报》 北大核心 2023年第10期939-945,共7页
随着社交媒体的快速发展,人们在微博等平台上表达情感的方式也得到了极大的丰富和多样。因此,针对中文微博情感分析的研究变得尤为重要。为提高中文微博情感分析的效果,设计了一种基于BERT-BiGRU和多尺度卷积神经网络(Convolutional Neu... 随着社交媒体的快速发展,人们在微博等平台上表达情感的方式也得到了极大的丰富和多样。因此,针对中文微博情感分析的研究变得尤为重要。为提高中文微博情感分析的效果,设计了一种基于BERT-BiGRU和多尺度卷积神经网络(Convolutional Neural Networks, CNN)的中文微博情感分析模型。具体来说,首先,利用预训练的BERT模型对微博文本进行编码;然后,通过BiGRU捕捉上下文信息和语境特征,并利用多尺度CNN提取文本中重要的局部情绪特征;最后,使用全连接层进行情感分类。在SMP2020发布的公开微博数据集上进行比较实验,实验结果表明,提出的模型在中文微博情感分类任务上取得了较好的表现,具有更高的准确性和泛化能力。 展开更多
关键词 中文微博 情感分析 双向门控循环单元 预训练模型 卷积神经网络
下载PDF
基于卷积树核的中文微博情感要素识别 被引量:7
20
作者 陈锋 巢文涵 +1 位作者 周庆 李舟军 《计算机科学》 CSCD 北大核心 2014年第12期133-137,142,共6页
情感要素识别是情感分析的关键子任务之一,其目的是识别出文本情感所作用的情感对象。文本情感要素识别属于最细粒度的情感分析,吸引了大量研究者的关注。中文微博由于其语言简短灵活、文本不规范、噪声较大等特点,给中文微博情感分析... 情感要素识别是情感分析的关键子任务之一,其目的是识别出文本情感所作用的情感对象。文本情感要素识别属于最细粒度的情感分析,吸引了大量研究者的关注。中文微博由于其语言简短灵活、文本不规范、噪声较大等特点,给中文微博情感分析研究工作带来了新的挑战。目前大部分情感要素识别方法都是基于规则的方法或者基于扁平化特征的统计学习方法,区分噪声的能力不强,性能提升有限。针对中文微博的特点,提出一种基于卷积树核的情感要素识别算法,即首先对句子进行词性标注与依存关系分析,将句子中的名词作为候选情感要素;然后基于两种不同的修剪策略对依存树进行修剪,以获取每个候选情感要素的结构化信息;最后采用卷积树核计算依存树的相似度,并在此基础上识别句子中的情感要素。NLP&CC2012和NLP&CC2013中文微博情感分析评测任务中的实验验证了该方法的性能,其准确率相比于传统方法有显著提升。 展开更多
关键词 情感要素识别 中文微博 卷积树核 依存树修剪
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部