期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
中文电子病历命名实体标注语料库构建 被引量:19
1
作者 曲春燕 关毅 +2 位作者 杨锦锋 赵永杰 刘雅欣 《高技术通讯》 CAS CSCD 北大核心 2015年第2期143-150,共8页
针对中文电子病历命名实体语料标注空白的现状,研究了中文电子病历命名实体标注语料库的构建。参考2010年美国国家集成生物与临床信息学研究中心(1282)给出的电子病历命名实体类型及修饰类型的定义,在专业医生的指导下制定了详尽的中文... 针对中文电子病历命名实体语料标注空白的现状,研究了中文电子病历命名实体标注语料库的构建。参考2010年美国国家集成生物与临床信息学研究中心(1282)给出的电子病历命名实体类型及修饰类型的定义,在专业医生的指导下制定了详尽的中文电子病历标注规范;通过对大量中文电子病历的分析,提出了一套完整的中文电子病历命名实体标注方案,而且采用预标注和正式标注的方法,建立了一定规模的中文电子病历命名实体标注语料库,其标注语料的一致性达到了92%以上。该工作对中文电子病历的命名实体识别及信息抽取研究提供了可靠的数据支持,对医疗知识挖掘也有重要意义。 展开更多
关键词 中文电子病历(cemr) 命名实体 标注语料库 标注规范 标注一致性(IAA)
下载PDF
中文电子病历命名实体识别的研究与进展 被引量:16
2
作者 杜晋华 尹浩 冯嵩 《电子学报》 EI CAS CSCD 北大核心 2022年第12期3030-3053,共24页
海量电子病历(Electronic Medical Record,EMR)数据是支撑医疗智能化研究的重要原料,然而电子病历文本数据的半结构化甚至无结构化特点,造成后续对其分析利用的极大困难.虽然近年来基于深度学习的命名实体识别(Named Entity Recognition... 海量电子病历(Electronic Medical Record,EMR)数据是支撑医疗智能化研究的重要原料,然而电子病历文本数据的半结构化甚至无结构化特点,造成后续对其分析利用的极大困难.虽然近年来基于深度学习的命名实体识别(Named Entity Recognition,NER)成为对电子病历进行自动化信息抽取的核心技术,但鉴于中文电子病历(Chinese Electronic Medical Record,CEMR)具有包括病历文本的非规范性与专业性、医疗实体的独特性和标注语料的稀缺性在内的独特文本数据特征,该研究目前仍存在诸多挑战.本文对中文电子病历命名实体识别的研究与进展进行了综述,系统梳理了命名实体识别的概念、相关理论模型以及制约中文电子病历命名实体识别准确率和识别效率的主要原因;从技术发展角度详细分析了中文电子病历命名实体识别方法的变革历程;并对中文电子病历命名实体识别效果做了实验验证与深入分析,指出了现有模型的不足与改进方向.鉴于国内近年来与中文信息学处理相关的测评会议CCKS持续关注中文电子病历命名实体识别,本文特别对CCKS在该领域五年来的全部代表性测评论文做了纵横对比分析,并通过在主流模型上的深入实验与研究,为后续该领域的继续推进寻求了思路. 展开更多
关键词 中文电子病历 命名实体识别 深度学习 预训练模型 自然语言处理 医疗信息化
下载PDF
面向中文电子病历的词法语料标注研究 被引量:9
3
作者 蒋志鹏 赵芳芳 +1 位作者 关毅 杨锦锋 《高技术通讯》 CAS CSCD 北大核心 2014年第6期609-615,共7页
针对中文电子病历(CEMR)标注语料匮乏,目前面向中文电子病历的分词和词性标注研究仍处于空白阶段的实际情况,从中文电子病历语料的构建出发,提出了从数据预处理到语料标注的整体方案,获得了较高的标注一致性,为进行更大规模更高质量的... 针对中文电子病历(CEMR)标注语料匮乏,目前面向中文电子病历的分词和词性标注研究仍处于空白阶段的实际情况,从中文电子病历语料的构建出发,提出了从数据预处理到语料标注的整体方案,获得了较高的标注一致性,为进行更大规模更高质量的病历语料标注工作提供了指导。通过实验量化中文电子病历与开放领域语料、英文电子病历语料的词法统计差异,系统地分析了通用标注模型在中文电子病历中的错误分布,为进行适用于中文电子病历分析的自然语言处理(NLP)技术研究奠定了基础。 展开更多
关键词 中文电子病历(cemr) 词性标注 标注一致性 语料差异 错误分析
下载PDF
面向中文电子病历的句法分析融合模型 被引量:4
4
作者 蒋志鹏 关毅 《自动化学报》 EI CSCD 北大核心 2019年第2期276-288,共13页
完全句法分析是自然语言处理(Natural language processing, NLP)中重要的结构化过程,由于中文电子病历(Chinese electronic medical record, CEMR)句法标注语料匮乏,目前还没有面向中文电子病历的完全句法分析研究.本文针对中文电子病... 完全句法分析是自然语言处理(Natural language processing, NLP)中重要的结构化过程,由于中文电子病历(Chinese electronic medical record, CEMR)句法标注语料匮乏,目前还没有面向中文电子病历的完全句法分析研究.本文针对中文电子病历模式化强的子语言特征,首次以树片段形式化中文电子病历复用的模式,提出了面向数据句法分析(Dataoriented parsing, DOP)和层次句法分析融合模型.在树片段抽取阶段,提出效率更高的标准树片段和局部树片段抽取算法,分别解决了标准树片段的重复比对问题,以及二次树核(Quadratic tree kernel, QTK)的效率低下问题,获得了标准树片段集和局部树片段集.基于上述两个树片段集,提出词汇和词性混合匹配策略和最大化树片段组合算法改进面向数据句法分析模型,缓解了无效树片段带来的噪声.实验结果表明,该融合模型能够有效改善中文电子病历句法分析效果,基于少量标注语料F1值能够达到目前最高的80.87%,并且在跨科室句法分析上超过Stanford parser和Berkeley parser 2%以上. 展开更多
关键词 中文电子病历 完全句法分析 面向数据句法分析 层次句法分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部