The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nano...The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nanostructures are of single crystal h-AlN with a growth orientation of [001]. Their growth is attributed to the vapour-liquid-solid (VLS) mechanism. To investigate the factors affecting field emission (FE) properties of AlN nanostructures, we compare their FE behaviours in several aspects. Experimental results show that AIN nanocrater arrays possess the best FE properties, such as a threshold field of 7.2 V/μm and an emission current fluctuation lower than 4%. Moreover, the three AlN nanostructures all have good field emission properties compared with a number of other excellent cathode nanomaterials, which suggests that they are future promising FE nanomaterials.展开更多
Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to...Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to control oxygen concentration in the furnace,thereby assisting the growth of the tungsten oxide nanowires.The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I-V curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires.All of the I-V curves observed are symmetric,which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I-V curves by using a metal semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires,such as the carrier concentration,the carrier mobility and the conductivity.展开更多
A procedure for purification of single walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition(CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as prepared sample, the ...A procedure for purification of single walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition(CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.展开更多
To obtain a high field emission (FE) current with a low driving voltage, it is important to control and optimize carbon nanofiber (CNF) array patterns for FE. While there have been various means for controlling CNF ar...To obtain a high field emission (FE) current with a low driving voltage, it is important to control and optimize carbon nanofiber (CNF) array patterns for FE. While there have been various means for controlling CNF array patterns reported over the past few decades, array patterning using lithography is the method typically used to control CNF morphology. Because lithography uses many masks and is costly, it is necessary to establish a simpler process. In this study, the grain size and distribution of catalysts with phase separation were controlled. A system which controls the morphology of small bundles of CNFs was constructed with the distance between the bundles kept constant in order to obtain a higher FE current. The Ni catalyst layer for forming the CNF morphology was separated by noncatalytic Cr grains formed by cosputtering. As a result, it was possible to control the Ni content, the grain size and synthesis density of CNFs in the alloy with a varying number of nickel pellets placed on the chromium target. This method is an epochmaking CNF patterning technique very different from lithography.展开更多
We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ ...We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ by means of a UV photo-CVD technique and HfO_2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties. Low leakage current densities on the order of 10 -8 A/cm 2 at 1 MV/cm for deposited ultrathin Ta_2O_5 films and ca.10 -6 A/cm 2 for the photo-CVD ZrO_2 layers and photo-irradiated sol-gel HfO_2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O( 1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta_2O_5 films deposited across 10.16-cm Si wafers exhibit a high thickness uniformity with a variation of less than \{±2.0%\} being obtained for ultrathin ca.10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.展开更多
Hot corrosion and erosion are recognized as serious problems in coal based power generation plants in India. The coal used in Indian power stations has large amounts of ash (about 50%) which contain abrasive mineral s...Hot corrosion and erosion are recognized as serious problems in coal based power generation plants in India. The coal used in Indian power stations has large amounts of ash (about 50%) which contain abrasive mineral species such as hard quartz (up to 15%) which increase the erosion propensity of coal. Hot corrosion and erosion in boilers and related components are responsible for huge losses, both direct and indirect, in power generation. An understanding of these problems and thus to develop suitable protective system is essential for maximizing the utilization of such components. These problems can be prevented by either changing the material or altering the environment or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating material from the environment is gaining importance in surface engineering.展开更多
基金supported by the National Basic Research Program of China(Grant No 2007CB935500)the National High Technology Research and Development Program of China(Grant No 2007AA03Z305)+5 种基金the National Science Foundation for Young Scientists of China(Grant No 50802117)the National Joint Science Fund with Guangdong Province(Grant Nos U0634002 and U0734003)the Specialized Research fund for the Doctoral Program of High Education of China(Grant No 20070558063)the Science and Technology Department of Guangdong Provincethe Education Department of Guangdong Provincethe Science and Technology Department of Guangzhou City,China
文摘The controllable growth of three different morphologies of AlN nanostructures (nanorod, nanotip and nanocrater) arrays are successfully realized by using chemical vapour deposition (CVD) technology. All three nanostructures are of single crystal h-AlN with a growth orientation of [001]. Their growth is attributed to the vapour-liquid-solid (VLS) mechanism. To investigate the factors affecting field emission (FE) properties of AlN nanostructures, we compare their FE behaviours in several aspects. Experimental results show that AIN nanocrater arrays possess the best FE properties, such as a threshold field of 7.2 V/μm and an emission current fluctuation lower than 4%. Moreover, the three AlN nanostructures all have good field emission properties compared with a number of other excellent cathode nanomaterials, which suggests that they are future promising FE nanomaterials.
基金Project supported by the National Natural Science Foundation of China (Grant No 50671053)
文摘Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism.Tin powders are used to control oxygen concentration in the furnace,thereby assisting the growth of the tungsten oxide nanowires.The grown tungsten oxide nanowires are determined to be of crystalline W18O49. I-V curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires.All of the I-V curves observed are symmetric,which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I-V curves by using a metal semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires,such as the carrier concentration,the carrier mobility and the conductivity.
文摘A procedure for purification of single walled carbon nanotubes(SWNTs) grown by the chemical vapour deposition(CVD) of carbon monooxide has been developed. Based on the result from TGA/DTA of as prepared sample, the oxidation temperature was determined. The process included sonication, oxidation and acid washing steps. The purity and yield after purification were determined and estimated by TEM. Moreover, for the first time, a loop structure for CVD SWNTs has been observed.
文摘To obtain a high field emission (FE) current with a low driving voltage, it is important to control and optimize carbon nanofiber (CNF) array patterns for FE. While there have been various means for controlling CNF array patterns reported over the past few decades, array patterning using lithography is the method typically used to control CNF morphology. Because lithography uses many masks and is costly, it is necessary to establish a simpler process. In this study, the grain size and distribution of catalysts with phase separation were controlled. A system which controls the morphology of small bundles of CNFs was constructed with the distance between the bundles kept constant in order to obtain a higher FE current. The Ni catalyst layer for forming the CNF morphology was separated by noncatalytic Cr grains formed by cosputtering. As a result, it was possible to control the Ni content, the grain size and synthesis density of CNFs in the alloy with a varying number of nickel pellets placed on the chromium target. This method is an epochmaking CNF patterning technique very different from lithography.
文摘We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta_2O_5 and ZrO_2 have been deposited at t<400 ℃ by means of a UV photo-CVD technique and HfO_2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties. Low leakage current densities on the order of 10 -8 A/cm 2 at 1 MV/cm for deposited ultrathin Ta_2O_5 films and ca.10 -6 A/cm 2 for the photo-CVD ZrO_2 layers and photo-irradiated sol-gel HfO_2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O( 1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta_2O_5 films deposited across 10.16-cm Si wafers exhibit a high thickness uniformity with a variation of less than \{±2.0%\} being obtained for ultrathin ca.10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.
文摘Hot corrosion and erosion are recognized as serious problems in coal based power generation plants in India. The coal used in Indian power stations has large amounts of ash (about 50%) which contain abrasive mineral species such as hard quartz (up to 15%) which increase the erosion propensity of coal. Hot corrosion and erosion in boilers and related components are responsible for huge losses, both direct and indirect, in power generation. An understanding of these problems and thus to develop suitable protective system is essential for maximizing the utilization of such components. These problems can be prevented by either changing the material or altering the environment or by separating the component surface from the environment. Corrosion prevention by the use of coatings for separating material from the environment is gaining importance in surface engineering.