期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Numerical solution of generalized DPL model using wavelet method during thermal therapy applications 被引量:5
1
作者 P.Kumar K.N.Rai 《International Journal of Biomathematics》 SCIE 2019年第3期169-190,共22页
In this paper, generalized dual-phase-lag (DPL) model has been studied for the numerical analysis of spatial variation of temperature within living biological tissues during thermal therapy applications. A new hybrid ... In this paper, generalized dual-phase-lag (DPL) model has been studied for the numerical analysis of spatial variation of temperature within living biological tissues during thermal therapy applications. A new hybrid numerical scheme based on finite difference scheme and Chebyshev wavelet Galerkin method are used to solve the generalized DPL model with constant heat flux boundary condition. Multi-resolution and multi-scale computational property of Chebyshev wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. Our study demonstrates that due to presence of coupling factor (convection–perfusion), generalized DPL model predicts lower temperature than classical DPL and Pennes model at the tumor position. Higher values of phase lag times results in lower temperature at the tumor position. But, in case of variation of phase lag time due to temperature gradient, the nature of temperature profile also depends on the spatial coordinate. The effect of the blood temperature, porosity and interfacial convective heat transfer on temperature distribution has been investigated. It is found that larger values of porosity and interfacial convective heat transfer results in lower temperature at the tumor position. Also, both porosity and interfacial convective heat transfer are pronounced more at higher values. The whole analysis is presented in dimensionless form. 展开更多
关键词 chebyshev wavelet GALERKIN method Generalized DPL MODEL NONEQUILIBRIUM bioheat transfer Thermal therapy
原文传递
Wavelet analysis of stagnation point flow of non-Newtonian nanofluid 被引量:3
2
作者 M.HAMID M.USMAN +2 位作者 R.U.HAQ4 Z.H.KHAN Wei WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第8期1211-1226,共16页
The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation ef... The wavelet approach is introduced to study the influence of the natural convection stagnation point flow of the Williamson fluid in the presence of thermophysical and Brownian motion effects. The thermal radiation effects are considered along a permeable stretching surface. The nonlinear problem is simulated numerically by using a novel algorithm based upon the Chebyshev wavelets. It is noticed that the velocity of the Williamson fluid increases for assisting flow cases while decreases for opposing flow cases when the unsteadiness and suction parameters increase, and the magnetic effect on the velocity increases for opposing flow cases while decreases for assisting flow cases. When the thermal radiation parameter, the Dufour number, and Williamson’s fluid parameter increase, the temperature increases for both assisting and opposing flow cases. Meanwhile, the temperature decreases when the Prandtl number increases. The concentration decreases when the Soret parameter increases, while increases when the Schmidt number increases. It is perceived that the assisting force decreases more than the opposing force. The findings endorse the credibility of the proposed algorithm, and could be extended to other nonlinear problems with complex nature. 展开更多
关键词 WILLIAMSON NANOFLUID heat and mass transfer STAGNATION point FLOW assisting and opposing FLOW chebyshev wavelet method
下载PDF
A Strong Method for Solving Systems of Integro-Differential Equations
3
作者 Jafar Biazar Hamideh Ebrahimi 《Applied Mathematics》 2011年第9期1105-1113,共9页
The introduced method in this paper consists of reducing a system of integro-differential equations into a system of algebraic equations, by expanding the unknown functions, as a series in terms of Chebyshev wavelets ... The introduced method in this paper consists of reducing a system of integro-differential equations into a system of algebraic equations, by expanding the unknown functions, as a series in terms of Chebyshev wavelets with unknown coefficients. Extension of Chebyshev wavelets method for solving these systems is the novelty of this paper. Some examples to illustrate the simplicity and the effectiveness of the proposed method have been presented. 展开更多
关键词 SYSTEMS of Integro-Differential Equations chebyshev waveletS method MOTHER wavelet Operational Matrix
下载PDF
利用第二类Chebyshev小波求二阶常微分方程组边值问题的数值解 被引量:3
4
作者 周凤英 许小勇 《数学的实践与认识》 北大核心 2016年第16期242-252,共11页
给出了一个求二阶常微分方程组边值问题数值解的第二类Chebyshev小波配点法.利用第二类Chebyshev小波积分算子矩阵,将问题转化成代数方程组的运算.数值例子说明了方法的准确性及易操作性.另外,为了表明方法的高精度性和有效性,数值算例... 给出了一个求二阶常微分方程组边值问题数值解的第二类Chebyshev小波配点法.利用第二类Chebyshev小波积分算子矩阵,将问题转化成代数方程组的运算.数值例子说明了方法的准确性及易操作性.另外,为了表明方法的高精度性和有效性,数值算例结果与解析解,以及运用变分迭代法,B样条配点法,连续遗传算法等得到的结果进行了比较. 展开更多
关键词 第二类chebyshev小波 二阶常微分方程组边值问题 积分算子矩阵 配点法
原文传递
高阶微分方程的第3类Chebyshev小波数值解法 被引量:1
5
作者 朱合欢 周凤英 黄英杰 《江西科学》 2021年第2期197-202,共6页
提出了一种求解高阶微分方程数值解的第3类Chebyshev小波方法。通过利用位移第3类Chebyshev多项式,在Riemann-liouville分数阶定义下,借助Laplace变换推导了第3类Chebyshev小波函数分数阶积分的精确表达式,给出了小波函数逼近的误差估... 提出了一种求解高阶微分方程数值解的第3类Chebyshev小波方法。通过利用位移第3类Chebyshev多项式,在Riemann-liouville分数阶定义下,借助Laplace变换推导了第3类Chebyshev小波函数分数阶积分的精确表达式,给出了小波函数逼近的误差估计。利用小波配置法,将高阶微分方程的求解问题转化为代数方程组进行求解。数值算例表明了该算法的适用性与有效性。 展开更多
关键词 第3类chebyshev小波 高阶微分方程 分数阶积分 配置法
下载PDF
第六类Chebyshev小波配置法求分数阶微分方程数值解
6
作者 黄英杰 周凤英 +1 位作者 许小勇 何红梅 《广西师范大学学报(自然科学版)》 CAS 北大核心 2023年第3期130-143,共14页
基于第六类Chebyshev小波配置法,提出一种求解分数阶微分方程数值解的数值方法。利用平移的第六类Chebyshev多项式,在Riemann-Liouville分数阶定义下,获得了第六类Chebyshev小波函数的分数阶积分公式的精确表达式。利用积分公式,结合有... 基于第六类Chebyshev小波配置法,提出一种求解分数阶微分方程数值解的数值方法。利用平移的第六类Chebyshev多项式,在Riemann-Liouville分数阶定义下,获得了第六类Chebyshev小波函数的分数阶积分公式的精确表达式。利用积分公式,结合有效配置法,将分数阶微分方程的求解问题转化为代数方程组进行求解。同时,给出了第六类Chebyshev小波函数展开逼近的一致收敛性分析和L2范数意义下的误差估计。通过数值算例验证该算法的适用性与有效性。 展开更多
关键词 第六类chebyshev小波 分数阶微分方程 Riemann-Liouville分数阶积分 Caputo分数阶微分 配置法
下载PDF
一类具有弱奇异核的偏积分微分方程的Chebyshev小波数值方法(英文)
7
作者 许小勇 周凤英 谢宇 《应用数学》 CSCD 北大核心 2019年第4期747-766,共20页
本文提出一种基于第四类Chebyshev小波配置法,求解了一类具有弱奇异核的偏积分微分方程数值解.利用第四类移位Chebyshev多项式,在Riemann-Liouville分数阶积分意义下,导出Chebyshev的分数次积分公式.通过利用分数次积分公式和二维的第四... 本文提出一种基于第四类Chebyshev小波配置法,求解了一类具有弱奇异核的偏积分微分方程数值解.利用第四类移位Chebyshev多项式,在Riemann-Liouville分数阶积分意义下,导出Chebyshev的分数次积分公式.通过利用分数次积分公式和二维的第四类Chebyshev小波结合配置法,将具有弱奇异核的偏积分微分方程转化为代数方程组求解.给出了第四类Chebyshev小波的收敛性分析.数值例子证明了本文方法的有效性. 展开更多
关键词 偏积分微分方程 弱奇异核 第四类chebyshev小波 配置法 分数次积分
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部