An efficient direct spectral domain decomposition method is developed coupled with Chebyshev spectral approximation for the solution of 2D, unsteady and in- compressible Navier-Stokes equations in complex geometries. ...An efficient direct spectral domain decomposition method is developed coupled with Chebyshev spectral approximation for the solution of 2D, unsteady and in- compressible Navier-Stokes equations in complex geometries. In this numerical approach, the spatial domains of interest are decomposed into several non-overlapping rectangu- lar sub-domains. In each sub-domain, an improved projection scheme with second-order accuracy is used to deal with the coupling of velocity and pressure, and the Chebyshev collocation spectral method (CSM) is adopted to execute the spatial discretization. The influence matrix technique is employed to enforce the continuities of both variables and their normal derivatives between the adjacent sub-domains. The imposing of the Neu- mann boundary conditions to the Poisson equations of pressure and intermediate variable will result in the indeterminate solution. A new strategy of assuming the Dirichlet bound- ary conditions on interface and using the first-order normal derivatives as transmission conditions to keep the continuities of variables is proposed to overcome this trouble. Three test cases are used to verify the accuracy and efficiency, and the detailed comparison be- tween the numerical results and the available solutions is done. The results indicate that the present method is efficiency, stability, and accuracy.展开更多
Investigations into active noise control(ANC)technique have been conducted with the aim of effective control of the low-frequency noise.In practice,however,the performance of currently available ANC systems degrades d...Investigations into active noise control(ANC)technique have been conducted with the aim of effective control of the low-frequency noise.In practice,however,the performance of currently available ANC systems degrades due to the effects of nonlinearity in the primary and secondary paths,primary noise and louder speaker.This paper proposes a hybrid control structure of nonlinear ANC system to control the non-stationary noise produced by the rotating machinery on the nonlinear primary path.A fast version of ensemble empirical mode decomposition is used to decompose the non-stationary primary noise into intrinsic mode functions,which are expanded using the second-order Chebyshev nonlinear filter and then individually controlled.The convergence of the nonlinear ANC system is also discussed.Simulation results demonstrate that proposed method outperforms the FSLMS and VFXLMS algorithms with respect to noise reduction and convergence rate.展开更多
How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave's propagation and scattering. Levin method is a classical quadrature method for ...How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave's propagation and scattering. Levin method is a classical quadrature method for this type of integrals. Unfortunately it is susceptible to the system of linear equations' ill-conditioned behavior. We bring forward a universal quadrature method in this paper, which adopts Chebyshev differential matrix to solve the ordinary differential equation (ODE). This method can not only obtain the indefinite integral' function values directly, but also make the system of linear equations well-conditioned for general oscillatory integrals. Furthermore, even if the system of linear equations in our method is ill-conditioned, TSVD method can be adopted to solve them properly and eventually obtain accurate integral results, thus making a breakthrough in Levin method's susceptivity to the system of linear equations' ill-conditioned behavior.展开更多
This paper presents the extension of the global description approach of a discontinuous function, which is proposed in the previous paper, to a spectral domain decomposition method. This multi-domain spectral immersed...This paper presents the extension of the global description approach of a discontinuous function, which is proposed in the previous paper, to a spectral domain decomposition method. This multi-domain spectral immersed interlace method(IIM) divides the whole computation domain into the smooth and discontinuous parts. Fewer points on the smooth domains are used via taking advantage of the high accuracy property of the spectral method, but more points on the discontinuous domains are employed to enhance the resolution of the calculation. Two that the domain decomposition technique can placed around the discontinuity. The present reached, in spite of the enlarged computational discontinuous problems are tested to verify the present method. The results show reduce the error of the spectral IIM, especially when more collocation points are method is t:avorable for the reason that the same level of the accuracy can be domain.展开更多
We study approximate solutions of a nonlinear integral equation of Hammerstein type. We describe the principle of discrete Adomian decomposition method (DADM). DADM is considered in the case we evaluate numerical inte...We study approximate solutions of a nonlinear integral equation of Hammerstein type. We describe the principle of discrete Adomian decomposition method (DADM). DADM is considered in the case we evaluate numerical integration by using Chebyshev roots. This technique gives an accurate solutions as will shown by illustrate examples.展开更多
本文提出一种新的非平稳非线性信号特征提取方法。首先,利用Chebyshev插值法建立非平稳信号的最佳一致逼近函数;然后,通过对该函数进行偏正交分解获取对应的特征值及特征向量。特征值及特征向量作为信号特征,具有较高的稳定性。该方法...本文提出一种新的非平稳非线性信号特征提取方法。首先,利用Chebyshev插值法建立非平稳信号的最佳一致逼近函数;然后,通过对该函数进行偏正交分解获取对应的特征值及特征向量。特征值及特征向量作为信号特征,具有较高的稳定性。该方法计算量少,具有较高的模式稳定性。运用该方法通过对CWRU(Case Western Reserve University Bearing Data Center)轴承数据分析计算,得到正常滚动轴承与各类故障滚动轴承的特征值向量。实验表明:特征值向量与正常滚动轴承,故障滚动轴承有明显的差异,取得了良好的分类效果。展开更多
This paper ix devoted to establishment of the Chebyshev pseudospectral domain de-composition scheme for solving two-dimensional elliptic equation. By the generalized equivalent variatiunal form, we can get the stabili...This paper ix devoted to establishment of the Chebyshev pseudospectral domain de-composition scheme for solving two-dimensional elliptic equation. By the generalized equivalent variatiunal form, we can get the stability and convergence of this new scheme.展开更多
This paper is devoted to the Chebyshev pseudospectral domain decomposition method of one-dimensional elliptic problems,it is easily applied to complex geometry.The approximate accuracy can be increased by increasing t...This paper is devoted to the Chebyshev pseudospectral domain decomposition method of one-dimensional elliptic problems,it is easily applied to complex geometry.The approximate accuracy can be increased by increasing the order of approximation in fixed number of subdomains,rather than by resorting to a further partitioning.The stability and the convergence of this method are proved.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51176026)the Fundamental Research Funds for the Central Universities(No.DUT14RC(3)029)
文摘An efficient direct spectral domain decomposition method is developed coupled with Chebyshev spectral approximation for the solution of 2D, unsteady and in- compressible Navier-Stokes equations in complex geometries. In this numerical approach, the spatial domains of interest are decomposed into several non-overlapping rectangu- lar sub-domains. In each sub-domain, an improved projection scheme with second-order accuracy is used to deal with the coupling of velocity and pressure, and the Chebyshev collocation spectral method (CSM) is adopted to execute the spatial discretization. The influence matrix technique is employed to enforce the continuities of both variables and their normal derivatives between the adjacent sub-domains. The imposing of the Neu- mann boundary conditions to the Poisson equations of pressure and intermediate variable will result in the indeterminate solution. A new strategy of assuming the Dirichlet bound- ary conditions on interface and using the first-order normal derivatives as transmission conditions to keep the continuities of variables is proposed to overcome this trouble. Three test cases are used to verify the accuracy and efficiency, and the detailed comparison be- tween the numerical results and the available solutions is done. The results indicate that the present method is efficiency, stability, and accuracy.
基金The authors greatly acknowledge the support of the National Natural Science Foundation of China under Grants 11304019 and 11774378.
文摘Investigations into active noise control(ANC)technique have been conducted with the aim of effective control of the low-frequency noise.In practice,however,the performance of currently available ANC systems degrades due to the effects of nonlinearity in the primary and secondary paths,primary noise and louder speaker.This paper proposes a hybrid control structure of nonlinear ANC system to control the non-stationary noise produced by the rotating machinery on the nonlinear primary path.A fast version of ensemble empirical mode decomposition is used to decompose the non-stationary primary noise into intrinsic mode functions,which are expanded using the second-order Chebyshev nonlinear filter and then individually controlled.The convergence of the nonlinear ANC system is also discussed.Simulation results demonstrate that proposed method outperforms the FSLMS and VFXLMS algorithms with respect to noise reduction and convergence rate.
文摘How to calculate the highly oscillatory integrals is the bottleneck that restraints the research of light wave and electromagnetic wave's propagation and scattering. Levin method is a classical quadrature method for this type of integrals. Unfortunately it is susceptible to the system of linear equations' ill-conditioned behavior. We bring forward a universal quadrature method in this paper, which adopts Chebyshev differential matrix to solve the ordinary differential equation (ODE). This method can not only obtain the indefinite integral' function values directly, but also make the system of linear equations well-conditioned for general oscillatory integrals. Furthermore, even if the system of linear equations in our method is ill-conditioned, TSVD method can be adopted to solve them properly and eventually obtain accurate integral results, thus making a breakthrough in Levin method's susceptivity to the system of linear equations' ill-conditioned behavior.
基金National Natural Science Foundation of China(51076006)
文摘This paper presents the extension of the global description approach of a discontinuous function, which is proposed in the previous paper, to a spectral domain decomposition method. This multi-domain spectral immersed interlace method(IIM) divides the whole computation domain into the smooth and discontinuous parts. Fewer points on the smooth domains are used via taking advantage of the high accuracy property of the spectral method, but more points on the discontinuous domains are employed to enhance the resolution of the calculation. Two that the domain decomposition technique can placed around the discontinuity. The present reached, in spite of the enlarged computational discontinuous problems are tested to verify the present method. The results show reduce the error of the spectral IIM, especially when more collocation points are method is t:avorable for the reason that the same level of the accuracy can be domain.
文摘We study approximate solutions of a nonlinear integral equation of Hammerstein type. We describe the principle of discrete Adomian decomposition method (DADM). DADM is considered in the case we evaluate numerical integration by using Chebyshev roots. This technique gives an accurate solutions as will shown by illustrate examples.
文摘本文提出一种新的非平稳非线性信号特征提取方法。首先,利用Chebyshev插值法建立非平稳信号的最佳一致逼近函数;然后,通过对该函数进行偏正交分解获取对应的特征值及特征向量。特征值及特征向量作为信号特征,具有较高的稳定性。该方法计算量少,具有较高的模式稳定性。运用该方法通过对CWRU(Case Western Reserve University Bearing Data Center)轴承数据分析计算,得到正常滚动轴承与各类故障滚动轴承的特征值向量。实验表明:特征值向量与正常滚动轴承,故障滚动轴承有明显的差异,取得了良好的分类效果。
文摘This paper ix devoted to establishment of the Chebyshev pseudospectral domain de-composition scheme for solving two-dimensional elliptic equation. By the generalized equivalent variatiunal form, we can get the stability and convergence of this new scheme.
文摘This paper is devoted to the Chebyshev pseudospectral domain decomposition method of one-dimensional elliptic problems,it is easily applied to complex geometry.The approximate accuracy can be increased by increasing the order of approximation in fixed number of subdomains,rather than by resorting to a further partitioning.The stability and the convergence of this method are proved.