Change'4 Lunar Probe will softly land on the farside of the Moon for the first time of all mankind and carry out in-situ and rovering exploration. In this paper, the scientific significance and engineering difficulti...Change'4 Lunar Probe will softly land on the farside of the Moon for the first time of all mankind and carry out in-situ and rovering exploration. In this paper, the scientific significance and engineering difficulties of Change'4 are introduced and the probe's general design, including the aspects of landing site selection, relay communication, trajectory design of relay satellite is explained. Besides, four key technologies, namely safe landing strategy on complex terrain, orbit design and control of libration point 2, relay communication on L2, radioisotope thermoelectric generator (RTG) and electric-thermal utilization, as well as how to realize them are also discussed. Finally the prospect of the prominent technological breakthrough of Change'4 is described.展开更多
The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated ...The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO2 concentration elevated to - 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 〈 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m^2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem(p 〈 0.05).展开更多
文摘Change'4 Lunar Probe will softly land on the farside of the Moon for the first time of all mankind and carry out in-situ and rovering exploration. In this paper, the scientific significance and engineering difficulties of Change'4 are introduced and the probe's general design, including the aspects of landing site selection, relay communication, trajectory design of relay satellite is explained. Besides, four key technologies, namely safe landing strategy on complex terrain, orbit design and control of libration point 2, relay communication on L2, radioisotope thermoelectric generator (RTG) and electric-thermal utilization, as well as how to realize them are also discussed. Finally the prospect of the prominent technological breakthrough of Change'4 is described.
基金supported by and the Fundamental Research Funds for the National Science Foundation of China (No. 41171238)the Ministry of Science and Technology (No. 2013BAD11B01)+1 种基金the Central Universities (No. KYTZ201404)the Nonprofit Research Foundation for Agriculture (No. 200903003)
文摘The aim of this experiment was to determine the impacts of climate change on soil profile concentrations and diffusion effluxes of methane in a rice-wheat annual rotation ecosystem in Southeastern China. We initiated a field experiment with four treatments:ambient conditions(CKs), CO2 concentration elevated to - 500 μmol/mol(FACE),temperature elevated by ca. 2°C(T) and combined elevation of CO2 concentration and temperature(FACE + T). A multilevel sampling probe was designed to collect the soil gas at four different depths, namely, 7 cm, 15 cm, 30 cm and 50 cm. Methane concentrations were higher during the rice season and decreased with depth, while lower during the wheat season and increased with depth. Compared to CK, mean methane concentration was increased by 42%, 57% and 71% under the FACE, FACE + T and T treatments, respectively, at the 7 cm depth during the rice season(p 〈 0.05). Mean methane diffusion effluxes to the 7 cm depth were positive in the rice season and negative in the wheat season, resulting in the paddy field being a source and weak sink, respectively. Moreover, mean methane diffusion effluxes in the rice season were 0.94, 1.19 and 1.42 mg C/(m^2·hr) in the FACE,FACE + T and T treatments, respectively, being clearly higher than that in the CK. The results indicated that elevated atmospheric CO2 concentration and temperature could significantly increase soil profile methane concentrations and their effluxes from a rice-wheat field annual rotation ecosystem(p 〈 0.05).