In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/ser...In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/server setting is proposed, which uses pairings on certain elliptic curves. We show that the newly proposed key agreement protocol is practical and of great efficiency, meanwhile, it satisfies every desired security require ments for key agreement protocols.展开更多
Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. M...Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Many certificateless public key encryption and signature schemes have been proposed. However, the key agreement in CL-PKE is seldom discussed. In this paper, we present a new certificateless two party authentication key agreement protocol and prove its security attributes. Compared with the existing protocol, our protocol is more efficient.展开更多
Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes ...Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes have been established on Identity-Based Cryptography (IBC) with key escrow problem inherently. Such problem severely restricts the promotion of IBC-based Public Key Infrastructure including PEKS component. Hence, Certificateless Public Key Cryptography (CLPKC) is efficient to remove such problem. CLPKC is introduced into PEKS, and a general model of Certificateless PEKS (CLPEKS) is formalized. In addition, a practical CLPEKS scheme is constructed with security and efficiency analyses. The proposal is secure channel free, and semantically secure against adaptive chosen keyword attack and keyword guessing attack. To illustrate the superiority, massive experiments are conducted on Enron Email dataset which is famous in information retrieval field. Compared with existed constructions, CLPEKS improves the efficiency in theory and removes the key escrow problem.展开更多
Certificateless public key cryptography is a new paradigm introduced by Al-Riyami and Paterson.It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-...Certificateless public key cryptography is a new paradigm introduced by Al-Riyami and Paterson.It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography(ID-PKC).Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost.Based on this new signature scheme,a certificateless blind signature scheme is proposed.The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.展开更多
As an improtant cryptographic scheme, signcryption scheme has been widely used in applications since it could provide both of signature and encryption. With the development of the certificateless public key cryptograp...As an improtant cryptographic scheme, signcryption scheme has been widely used in applications since it could provide both of signature and encryption. With the development of the certificateless public key cryptography (CLPKC), many certificatelss signcryption (CLSC) schemes using bilinear pairing hve been proposed. Comparated other operations, the bilinear pairing operaion is much more compulicated. Therefore, CLSC scheme without bilinear pairing is more suitable for applications. Recently, Jing et al. proposed a CLSC scheme without bilinear pairing and claimed their scheme is secure against two types of adversaries. In this paper, we will show their scheme provide neither unforgeability property nor confidentiality property. To improve security, we also propose a new CLSC scheme without pairing and demonstrate it is provably secure in the random oracle model.展开更多
Recently, He et al. (Computers and Mathematics with Applications, 2012) proposed an efficient pairing-free certificateless authenticated key agreement (CL-AKA) protocol and claimed their protocol was provably secu...Recently, He et al. (Computers and Mathematics with Applications, 2012) proposed an efficient pairing-free certificateless authenticated key agreement (CL-AKA) protocol and claimed their protocol was provably secure in the extended Canetti-Krawczyk (eCK) model. By giving concrete attacks, we indicate that their protocol is not secure in the eCK model. We propose an improved protocol and show our improvement is secure in the eCK model under the gap DiffieHellman (GDH) assumption. Furthermore, the proposed protocol is very efficient.展开更多
Ring signcryption enables a user to send a message confidentially and authentically to a specific receiver in an anonymous way.One of the main reasons for the slow adoption of identity-based cryptography is the inhere...Ring signcryption enables a user to send a message confidentially and authentically to a specific receiver in an anonymous way.One of the main reasons for the slow adoption of identity-based cryptography is the inherent key escrow problem.In this paper a new certificateless ring signcryption scheme from pairings is presented.It is escrow free in that no KGC is able to decrypt ciphertexts itself.We then formally prove the security of the new scheme in the random oracle model IND-CCA2 and EUF-CMA.展开更多
Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present ...Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present an efficient constant-round group key exchange protocol, which is provably secure under the intractability of computation Diffie-Hellman problem. Our protocol is a contributory key exchange with perfect forward secrecy and has only two communication rounds. So it is more efficient than other protocols. Moreover, our protocol provides a method to design efficient constant-round group key exchange protocols and most secret sharing schemes could be adopted to construct our protocol.展开更多
Universal designated verifier signature schemes allows a signature holder to designate the signature to a desire designated verifier, in such a way that only designated verifier can verify this signature, but is unabl...Universal designated verifier signature schemes allows a signature holder to designate the signature to a desire designated verifier, in such a way that only designated verifier can verify this signature, but is unable to convince anyone else of this fact. The previous constructions of universal designated verifier signature rely on the underlying public key infrastructure, that needs both signers and verifiers to verify the authenticity of the public keys, and hence, the certificates are required. This article presents the first model and construction of the certificateless universal designated verifier signature scheme, in which the certificates are not needed. The proposed scheme satisfies all the requirements of the universal designated verifier signature in the certificateless system. Security proofs are provided for the scheme based on the random oracle model, assuming that the Bilinear diffie-hellman (BDH) problem is hard to solve.展开更多
Despite the large number of certificateless encryption schemes proposed recently, many of them have been found insecure under a practical attack, called malicious-but-passive KGC (Key Generation Center) attack. In t...Despite the large number of certificateless encryption schemes proposed recently, many of them have been found insecure under a practical attack, called malicious-but-passive KGC (Key Generation Center) attack. In this work we propose the first generic construction of certificateless encryption, which can be proven secure against malicious-but- passive KGC attacks in the standard model. In order to encrypt a message of any length, we consider the KEM/DEM (key encapsulation mechanism/data encapsulation mechanism) framework in the certificateless setting, and propose a generic construction of certificateless key encapsulation mechanism (CL-KEM) secure against malicious-but-passive KGC attacks in the standard model. It is based on an identity-based KEM, a public key encryption and a message authentication code. The high efficiency of our construction is due to the efficient implementations of these underlying building blocks, and is comparable to Bentahar et al.'s CL-KEMs, which have only been proven secure under the random oracle model with no consideration of the malicious-but-passive KGC attack. We also introduce the notion of certificateless tag-based KEM (CL-TKEM), which is an extension of Abe et al.'s work to the certificateless setting. We show that an efficient CL-TKEM can be constructed by modifying our CL-KEM scheme. We also show that with a CL-TKEM and a data encapsulation mechanism secure under our proposed security model, an efficient certificateless hybrid encryption can be constructed by applying Abe et al.'s transformation in the certificateless setting.展开更多
基金Supported bythe National Natural Science Foundationof China (60225007 ,60572155) the Science and Technology ResearchProject of Shanghai (04DZ07067)
文摘In the area of secure Web information system, mutual authentication and key agreement are essential between Web clients and servers. An efficient certificateless authenticated key agreement protocol for Web client/server setting is proposed, which uses pairings on certain elliptic curves. We show that the newly proposed key agreement protocol is practical and of great efficiency, meanwhile, it satisfies every desired security require ments for key agreement protocols.
基金Supported by the National Natural Science Foundation of China (19501032)
文摘Certificateless public key cryptography was introduced to overcome the key escrow limitation of the identity-based cryptography. It combines the advantages of the identity-based cryptography and the traditional PKI. Many certificateless public key encryption and signature schemes have been proposed. However, the key agreement in CL-PKE is seldom discussed. In this paper, we present a new certificateless two party authentication key agreement protocol and prove its security attributes. Compared with the existing protocol, our protocol is more efficient.
基金This research was supported by the National Science Foundation of China for Funding Projects (61173089,61472298) and National Statistical Science Program of China(2013LZ46).
文摘Public Key Encryption with Keyword Search (PEKS), an indispensable part of searchable encryption, is stock-in- trade for both protecting data and providing operability of encrypted data. So far most of PEKS schemes have been established on Identity-Based Cryptography (IBC) with key escrow problem inherently. Such problem severely restricts the promotion of IBC-based Public Key Infrastructure including PEKS component. Hence, Certificateless Public Key Cryptography (CLPKC) is efficient to remove such problem. CLPKC is introduced into PEKS, and a general model of Certificateless PEKS (CLPEKS) is formalized. In addition, a practical CLPEKS scheme is constructed with security and efficiency analyses. The proposal is secure channel free, and semantically secure against adaptive chosen keyword attack and keyword guessing attack. To illustrate the superiority, massive experiments are conducted on Enron Email dataset which is famous in information retrieval field. Compared with existed constructions, CLPEKS improves the efficiency in theory and removes the key escrow problem.
基金the National Natural Science Foundation of China (No.60673070)the Natural Science Foundation of Jiangsu Province (No.BK2006217)the Open Project of the Key Lab. on Computer Networks and Information Security (Xidian University) of Ministry of Education of China(No.20040105)
文摘Certificateless public key cryptography is a new paradigm introduced by Al-Riyami and Paterson.It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography(ID-PKC).Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost.Based on this new signature scheme,a certificateless blind signature scheme is proposed.The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 61202447), Natural Science Foundation of Hebei Province of China (F2013501066), Northeastern University at Qinhuangdao Science and Technology Support Program (xnk201307).
文摘As an improtant cryptographic scheme, signcryption scheme has been widely used in applications since it could provide both of signature and encryption. With the development of the certificateless public key cryptography (CLPKC), many certificatelss signcryption (CLSC) schemes using bilinear pairing hve been proposed. Comparated other operations, the bilinear pairing operaion is much more compulicated. Therefore, CLSC scheme without bilinear pairing is more suitable for applications. Recently, Jing et al. proposed a CLSC scheme without bilinear pairing and claimed their scheme is secure against two types of adversaries. In this paper, we will show their scheme provide neither unforgeability property nor confidentiality property. To improve security, we also propose a new CLSC scheme without pairing and demonstrate it is provably secure in the random oracle model.
文摘Recently, He et al. (Computers and Mathematics with Applications, 2012) proposed an efficient pairing-free certificateless authenticated key agreement (CL-AKA) protocol and claimed their protocol was provably secure in the extended Canetti-Krawczyk (eCK) model. By giving concrete attacks, we indicate that their protocol is not secure in the eCK model. We propose an improved protocol and show our improvement is secure in the eCK model under the gap DiffieHellman (GDH) assumption. Furthermore, the proposed protocol is very efficient.
基金supported by National Key Basic Research Program of China(973 program) under Grant No. 2011CB302903National Natural Science Foundation of China under Grant No.60873231,No.61073188+1 种基金China Postdoctoral Science Foundation under Grant No.20100471355Natural Science Foundation of Jiangsu Province under Grant No. BK2009426
文摘Ring signcryption enables a user to send a message confidentially and authentically to a specific receiver in an anonymous way.One of the main reasons for the slow adoption of identity-based cryptography is the inherent key escrow problem.In this paper a new certificateless ring signcryption scheme from pairings is presented.It is escrow free in that no KGC is able to decrypt ciphertexts itself.We then formally prove the security of the new scheme in the random oracle model IND-CCA2 and EUF-CMA.
基金Supported by the National Natural Science Foundation of China (90204012, 60573035, 60573036) and the University IT Research Center Project of Korea
文摘Certificateless public key cryptography (CL-PKC) avoids the inherent escrow of identity-based cryptography and does not require certificates to guarantee the authenticity of public keys. Based on CL-PKC, we present an efficient constant-round group key exchange protocol, which is provably secure under the intractability of computation Diffie-Hellman problem. Our protocol is a contributory key exchange with perfect forward secrecy and has only two communication rounds. So it is more efficient than other protocols. Moreover, our protocol provides a method to design efficient constant-round group key exchange protocols and most secret sharing schemes could be adopted to construct our protocol.
基金This work is supported by the National Natural Science Foundation of China (60473027).
文摘Universal designated verifier signature schemes allows a signature holder to designate the signature to a desire designated verifier, in such a way that only designated verifier can verify this signature, but is unable to convince anyone else of this fact. The previous constructions of universal designated verifier signature rely on the underlying public key infrastructure, that needs both signers and verifiers to verify the authenticity of the public keys, and hence, the certificates are required. This article presents the first model and construction of the certificateless universal designated verifier signature scheme, in which the certificates are not needed. The proposed scheme satisfies all the requirements of the universal designated verifier signature in the certificateless system. Security proofs are provided for the scheme based on the random oracle model, assuming that the Bilinear diffie-hellman (BDH) problem is hard to solve.
文摘Despite the large number of certificateless encryption schemes proposed recently, many of them have been found insecure under a practical attack, called malicious-but-passive KGC (Key Generation Center) attack. In this work we propose the first generic construction of certificateless encryption, which can be proven secure against malicious-but- passive KGC attacks in the standard model. In order to encrypt a message of any length, we consider the KEM/DEM (key encapsulation mechanism/data encapsulation mechanism) framework in the certificateless setting, and propose a generic construction of certificateless key encapsulation mechanism (CL-KEM) secure against malicious-but-passive KGC attacks in the standard model. It is based on an identity-based KEM, a public key encryption and a message authentication code. The high efficiency of our construction is due to the efficient implementations of these underlying building blocks, and is comparable to Bentahar et al.'s CL-KEMs, which have only been proven secure under the random oracle model with no consideration of the malicious-but-passive KGC attack. We also introduce the notion of certificateless tag-based KEM (CL-TKEM), which is an extension of Abe et al.'s work to the certificateless setting. We show that an efficient CL-TKEM can be constructed by modifying our CL-KEM scheme. We also show that with a CL-TKEM and a data encapsulation mechanism secure under our proposed security model, an efficient certificateless hybrid encryption can be constructed by applying Abe et al.'s transformation in the certificateless setting.