Mitophagy is activated by a number of stimuli, including hypoxia, energy stress, and increased oxidative phosphorylation activity. Mitophagy is associated with oxidative stress conditions and central neurodegenerative...Mitophagy is activated by a number of stimuli, including hypoxia, energy stress, and increased oxidative phosphorylation activity. Mitophagy is associated with oxidative stress conditions and central neurodegenerative diseases. Proper regulation of mitophagy is crucial for maintaining homeostasis; conversely, inadequate removal of mitochondria through mitophagy leads to the generation of oxidative species, including reactive oxygen species and reactive nitrogen species, resulting in various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These diseases are most prevalent in older adults whose bodies fail to maintain proper mitophagic functions to combat oxidative species. As mitophagy is essential for normal body function, by targeting mitophagic pathways we can improve these disease conditions. The search for effective remedies to treat these disease conditions is an ongoing process, which is why more studies are needed. Additionally, more relevant studies could help establish therapeutic conditions, which are currently in high demand. In this review, we discuss how mitophagy plays a significant role in homeostasis and how its dysregulation causes neurodegeneration. We also discuss how combating oxidative species and targeting mitophagy can help treat these neurodegenerative diseases.展开更多
Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or ...Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to delay or possibly stop further progression of the neurodegenerative disease in affected patients. Adeno-associated virus has been the vector of choice in recent clinical trials of therapies for neurodegenerative diseases due to its safety and efficiency in mediating gene transfer to the central nervous system. This review aims to discuss and summarize the progress and clinical applications of adeno-associated virus in neurodegenerative disease in central nervous system. Results from some clinical trials and successful cases of central neurodegenerative diseases deserve further study and exploration.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT and Future Planning,No.2018R1C1B5029745(to HJC),2011-0030072(to YH),2018R1D1A1B07040282(to JJ),2018R1A2B6001123(to NYJ)
文摘Mitophagy is activated by a number of stimuli, including hypoxia, energy stress, and increased oxidative phosphorylation activity. Mitophagy is associated with oxidative stress conditions and central neurodegenerative diseases. Proper regulation of mitophagy is crucial for maintaining homeostasis; conversely, inadequate removal of mitochondria through mitophagy leads to the generation of oxidative species, including reactive oxygen species and reactive nitrogen species, resulting in various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These diseases are most prevalent in older adults whose bodies fail to maintain proper mitophagic functions to combat oxidative species. As mitophagy is essential for normal body function, by targeting mitophagic pathways we can improve these disease conditions. The search for effective remedies to treat these disease conditions is an ongoing process, which is why more studies are needed. Additionally, more relevant studies could help establish therapeutic conditions, which are currently in high demand. In this review, we discuss how mitophagy plays a significant role in homeostasis and how its dysregulation causes neurodegeneration. We also discuss how combating oxidative species and targeting mitophagy can help treat these neurodegenerative diseases.
文摘Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to delay or possibly stop further progression of the neurodegenerative disease in affected patients. Adeno-associated virus has been the vector of choice in recent clinical trials of therapies for neurodegenerative diseases due to its safety and efficiency in mediating gene transfer to the central nervous system. This review aims to discuss and summarize the progress and clinical applications of adeno-associated virus in neurodegenerative disease in central nervous system. Results from some clinical trials and successful cases of central neurodegenerative diseases deserve further study and exploration.