In [16] a visco-elastic relaxation system, called the relaxed Burnett system, was proposed by Jin and Slemrod as a moment approximation to the Boltzmann equation. The relaxed Burnett system is weakly parabolic, has a ...In [16] a visco-elastic relaxation system, called the relaxed Burnett system, was proposed by Jin and Slemrod as a moment approximation to the Boltzmann equation. The relaxed Burnett system is weakly parabolic, has a linearly hyperbolic convection part, and is endowed with a generalized entropy inequality. It agrees with the solution of the Boltzmann equation up to the Burnett order via the Chapman-Enskog expansion. We develop a one-dimensional non-oscillatory numerical scheme based on the relaxed Burnett system for the Boltzmann equation. We compare numerical results for stationary shocks based on this relaxation scheme, and those obtained by the DSMC (Direct Simulation Monte Carlo), by the Navier-Stokes equations and by the extended thermodynamics with thirteen moments (the Grad equations). Our numerical experiments show that the relaxed Burnett gives more accurate approximations to the shock profiles of the Boltzmann equation obtained by the DSMC, for a range of Mach numbers for hypersonic flows, than those obtained by the other hydrodynamic systems.展开更多
The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central ...The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central schemes to solve these equations. The equilibrium states for each component are coupled in space and time to have a common temperature and velocity. The current schemes can handle strong shocks and the oscillations near the interfaces are negligible, which usually happens in the multi-component flows. The schemes also guarantee the exact mass conservation for each component, the exact conservation of total momentum, and energy in the whole particle system. The central schemes are robust, reliable, compact and easy to implement. Several one- and two-dimensional numerical test cases are included in this paper, which validate the application of these schemes to relativistic multi-component flows.展开更多
Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlin...Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity).展开更多
This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced...This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced to approximate system of conservation laws in curvilinear coordinates. Based on them, the semi-implicit relaxing schemes are con- structed as in [6, 12] without using any linear or nonlinear Riemann solvers. Numerical experiments for one-dimensional and two-dimensional problems are presented to demon- strate the performance and resolution of the current schemes.展开更多
给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta...给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta方法。本文格式保持了中心差分格式简单的优点,即不需用R iem ann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。展开更多
基金Supported by NSF grant DMS-0196106 Supported by NSF grant DMS-9803223 and DMS-00711463.
文摘In [16] a visco-elastic relaxation system, called the relaxed Burnett system, was proposed by Jin and Slemrod as a moment approximation to the Boltzmann equation. The relaxed Burnett system is weakly parabolic, has a linearly hyperbolic convection part, and is endowed with a generalized entropy inequality. It agrees with the solution of the Boltzmann equation up to the Burnett order via the Chapman-Enskog expansion. We develop a one-dimensional non-oscillatory numerical scheme based on the relaxed Burnett system for the Boltzmann equation. We compare numerical results for stationary shocks based on this relaxation scheme, and those obtained by the DSMC (Direct Simulation Monte Carlo), by the Navier-Stokes equations and by the extended thermodynamics with thirteen moments (the Grad equations). Our numerical experiments show that the relaxed Burnett gives more accurate approximations to the shock profiles of the Boltzmann equation obtained by the DSMC, for a range of Mach numbers for hypersonic flows, than those obtained by the other hydrodynamic systems.
文摘The dynamics of inviscid multi-component relativistic fluids may be modeled by the relativistic Euler equations, augmented by one (or more) additional species equation(s). We use the high-resolution staggered central schemes to solve these equations. The equilibrium states for each component are coupled in space and time to have a common temperature and velocity. The current schemes can handle strong shocks and the oscillations near the interfaces are negligible, which usually happens in the multi-component flows. The schemes also guarantee the exact mass conservation for each component, the exact conservation of total momentum, and energy in the whole particle system. The central schemes are robust, reliable, compact and easy to implement. Several one- and two-dimensional numerical test cases are included in this paper, which validate the application of these schemes to relativistic multi-component flows.
文摘Two central schemes of finite difference (FD) up to different accuracy orders of space sampling step Dx (Fourth order and Sixth order respectively) were used to study the 1-D nonlinear P-wave propagation in the nonlinear solid media by the numerical method. Distinctly different from the case of numerical modeling of linear elastic wave, there may be several difficulties in the numerical treatment to the nonlinear partial differential equation, such as the steep gradients, shocks and unphysical oscillations. All of them are the great obstacles to the stability and conver-gence of numerical calculation. Fortunately, the comparative study on the modeling of nonlinear wave by the two FD schemes presented in the paper can provide us with an easy method to keep the stability and convergence in the calculation field when the product of the absolute value of nonlinear coefficient and the value of u/x are small enough, namely, the value of bu/x is much smaller than 1. Several results are founded in the numerical study of nonlinear P-wave propagation, such as the waveform aberration, the generation and growth of harmonic wave and the energy redistribution among different frequency components. All of them will be more violent when the initial amplitude A0 is larger or the nonlinearity of medium is stronger. Correspondingly, we have found that the nonlinear P-wave propagation velocity will change with different initial frequency f of source wave or the wave velocity c (equal to the P-wave velocity in the same medium without considering nonlinearity).
基金This project supported partly by National Natural Science Foundation of China (No.19901031), the specialFunds for Major State
文摘This paper continues to study the central relaxing schemes for system of hyperbolic conservation laws, based on the local relaxation approximation. Two classes of relaxing systems with stiff source term are introduced to approximate system of conservation laws in curvilinear coordinates. Based on them, the semi-implicit relaxing schemes are con- structed as in [6, 12] without using any linear or nonlinear Riemann solvers. Numerical experiments for one-dimensional and two-dimensional problems are presented to demon- strate the performance and resolution of the current schemes.
文摘给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta方法。本文格式保持了中心差分格式简单的优点,即不需用R iem ann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。