期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
改进CenterNet的高压输电线路巡检故障实时检测方法 被引量:22
1
作者 赵锐 赵国伟 +4 位作者 张娟 王强 赵杰伦 董红月 张兴忠 《计算机工程与应用》 CSCD 北大核心 2021年第17期246-252,共7页
针对通用深度学习目标检测技术难以在高压输变电线路巡检时实现实时高效的故障检测,提出一种改进CenterNet的高压输变电线路巡检故障实时检测方法,对绝缘子自爆、防震锤脱落、鸟巢三类常见巡检故障进行检测。该方法基于深层特征融合网络... 针对通用深度学习目标检测技术难以在高压输变电线路巡检时实现实时高效的故障检测,提出一种改进CenterNet的高压输变电线路巡检故障实时检测方法,对绝缘子自爆、防震锤脱落、鸟巢三类常见巡检故障进行检测。该方法基于深层特征融合网络(DLAnet,Deep Layer Aggregation)、挤压-激励SE(Squeeze-and-Excitation)模块、可形变卷积进行高效深层特征提取网络DLA-SE的设计。在CenterNet架构下通过DLA-SE特征提取网络获取对象的中心点热力图,回归对象的宽高、偏移信息,得到对象边界框。实验结果表明,在Nvidia GTX 1080测试条件下该方法的mAP达到0.917,推理速度达到27.03 frame/s,与CenterNet、SSD与YOLOv3方法相比在检测精度上取得大幅度提升,证明了该方法的有效性。 展开更多
关键词 centernet 深层特征融合 电力巡检 故障检测 实时检测
下载PDF
结合多通道注意力的遥感图像飞机目标检测 被引量:19
2
作者 李婕 周顺 +2 位作者 朱鑫潮 李毅 王恩果 《计算机工程与应用》 CSCD 北大核心 2022年第1期209-217,共9页
针对尺度多样化、目标密集、成像质量较差的遥感影像上飞机目标识别精度低的问题,提出结合平行层特征共享结构和注意力机制的遥感飞机目标自动检测模型AFF-CenterNet。该方法采用“编码-解码”的主干网络结构,以ResNet50进行基础特征提... 针对尺度多样化、目标密集、成像质量较差的遥感影像上飞机目标识别精度低的问题,提出结合平行层特征共享结构和注意力机制的遥感飞机目标自动检测模型AFF-CenterNet。该方法采用“编码-解码”的主干网络结构,以ResNet50进行基础特征提取;引入空洞卷积与注意力约束的平行层特征共享结构进行特征融合,有效提高了算法的特征提取能力;在UCAS-AOD和RSOD公共遥感数据集上分别进行实验,检测精度达到96.78%,相较于Faster R-CNN、SSD、YOLOv5s和原CenterNet算法分别提高了6.2、7.2、1.48和16个百分点。实验结果表明,该AFF-CenterNet算法在保持一定计算效率的条件下最大化CenterNet的小目标表征能力,有效提升了遥感影像中飞机的检测精度,对实现遥感影像飞机快速检测具有一定的参考意义。 展开更多
关键词 遥感飞机影像 centernet 注意力机制 AFF-centernet
下载PDF
基于改进CenterNet的玉米雄蕊无人机遥感图像识别 被引量:18
3
作者 杨蜀秦 刘江川 +3 位作者 徐可可 桑雪 宁纪锋 张智韬 《农业机械学报》 EI CAS CSCD 北大核心 2021年第9期206-212,共7页
为准确识别抽雄期玉米雄蕊实现监测玉米长势、植株计数和估产,基于无锚框的CenterNet目标检测模型,通过分析玉米雄蕊的尺寸分布,并在特征提取网络中添加位置坐标,从而提出一种改进的玉米雄蕊识别模型。针对雄蕊尺寸较小的特点,去除Cente... 为准确识别抽雄期玉米雄蕊实现监测玉米长势、植株计数和估产,基于无锚框的CenterNet目标检测模型,通过分析玉米雄蕊的尺寸分布,并在特征提取网络中添加位置坐标,从而提出一种改进的玉米雄蕊识别模型。针对雄蕊尺寸较小的特点,去除CenterNet网络中对图像尺度缩小的特征提取模块,在降低模型参数的同时,提高检测速度。在CenterNet特征提取模型中添加位置信息,提高定位精度,降低雄蕊漏检率。试验结果表明,与有锚框的YOLO v4、Faster R-CNN模型相比,改进的CenterNet雄蕊检测模型对无人机遥感影像的玉米雄蕊识别精度达到92.4%,分别高于Faster R-CNN和YOLO v4模型26.22、3.42个百分点;检测速度为36 f/s,分别比Faster R-CNN和YOLO v4模型高32、23 f/s。本文方法能够准确地检测无人机遥感图像中尺寸较小的玉米雄蕊,为玉米抽雄期的农情监测提供参考。 展开更多
关键词 玉米雄蕊 无人机遥感 目标检测 深度学习 centernet
下载PDF
电力设备红外图像缺陷检测 被引量:16
4
作者 黄锐勇 戴美胜 +4 位作者 郑跃斌 黄勤琴 康立烨 苟先太 周维超 《中国电力》 CSCD 北大核心 2021年第2期147-155,共9页
机器人在巡检过程中采集到的红外图像很难反映设备目标的纹理信息。人工方法或传统机器学习方法不能精准识别和分类电力设备缺陷,同时其他环境因素容易导致误判。采用CenterNet结合结构化定位的算法模型,通过对现场红外图像数据样本收... 机器人在巡检过程中采集到的红外图像很难反映设备目标的纹理信息。人工方法或传统机器学习方法不能精准识别和分类电力设备缺陷,同时其他环境因素容易导致误判。采用CenterNet结合结构化定位的算法模型,通过对现场红外图像数据样本收集、训练及验证算法模型的计算,实现从复杂的红外图像中以较高的准确率将不同变电站设备及其部件识别定位出来。根据设备部件表面温度范围值和识别定位出的变电站设备类型,结合相关温度规范实现电力设备红外图像缺陷检测。实验结果表明,该方法提高了电力设备红外图像缺陷检测的检测精度,为电力设备红外图像智能检测提供了新的思路。 展开更多
关键词 红外图像 电力设备 centernet 结构化定位 缺陷检测
下载PDF
基于多尺度融合与无锚点YOLO v3的鱼群计数方法 被引量:16
5
作者 张璐 黄琳 +2 位作者 李备备 陈鑫 段青玲 《农业机械学报》 EI CAS CSCD 北大核心 2021年第S01期237-244,共8页
准确实现鱼群计数对于水产养殖中的生物量估算、存活率评估、养殖密度控制和运输销售管理等有着重要的指导作用。针对目前鱼群计数方法难以处理复杂背景、多尺度鱼群图像的问题,提出了一种基于多尺度融合与无锚点YOLO v3(Multi-scale fu... 准确实现鱼群计数对于水产养殖中的生物量估算、存活率评估、养殖密度控制和运输销售管理等有着重要的指导作用。针对目前鱼群计数方法难以处理复杂背景、多尺度鱼群图像的问题,提出了一种基于多尺度融合与无锚点YOLO v3(Multi-scale fusion and no anchor YOLO v3,MSF-NA-YOLO v3)的鱼群计数方法。首先采集多源鱼群图像,构建鱼群计数数据集,其次采用基于多尺度融合的方法提取鱼群图像特征,最后基于CenterNet目标检测网络识别出鱼群图像中的鱼体目标,实现鱼群计数。在真实的鱼群数据集上进行测试,计数准确率为96.26%,召回率为90.65%,F1值为93.37%,平均精度均值为90.20%。与基于YOLO v3、YOLO v4和ResNet+CenterNet的鱼群计数方法相比,召回率分别提高了5.80%、1.84%和3.48%,F1值分别提高了2.26%、0.33%和1.68%,平均精度均值分别提高了5.96%、1.97%和3.67%,表明基于本研究方法的计数结果与实际计数结果相差较小,综合性能更好。 展开更多
关键词 鱼群 水产养殖 深度学习 计数 YOLO v3 centernet
下载PDF
改进CenterNet算法的煤矿皮带运输异物识别研究 被引量:11
6
作者 任志玲 朱彦存 《控制工程》 CSCD 北大核心 2023年第4期703-711,共9页
为了实现运煤皮带运行时对进入其中的异物快速准确识别,防止皮带撕裂现象的发生,提出了一种改进的CenterNet运煤皮带异物检测算法。首先,对煤矿井下图像进行预处理,使其适应CenterNet算法,提高网络对目标图像检测的有效性;然后,对网络... 为了实现运煤皮带运行时对进入其中的异物快速准确识别,防止皮带撕裂现象的发生,提出了一种改进的CenterNet运煤皮带异物检测算法。首先,对煤矿井下图像进行预处理,使其适应CenterNet算法,提高网络对目标图像检测的有效性;然后,对网络进行改进,将残差模块中的标准卷积替换成深度可分离卷积,有效降低网络计算量,减少冗余;接着,采用组规范化作为优化规范化方式,降低了对硬件设施的要求;最后,使用加权特征图融合方法,充分利用各层提取的特征,提高网络的检测准确率。实验结果表明,针对异物目标尺寸差异较大且分布不均匀的情况,改进后的CenterNet算法降低了目标的误检率和漏检率,可有效提升检测速度和异物识别精度。 展开更多
关键词 异物检测 centernet 组规范化 深度可分离卷积 加权特征融合
下载PDF
国内外数字人文服务平台建设现状及思考 被引量:14
7
作者 程静 《图书馆学研究》 CSSCI 北大核心 2020年第2期37-42,共6页
文章以国际数字人文中心联盟网站(centerNet)上登记的数字人文服务平台为调查对象,对其地域分布及组织构成、资源及服务情况进行详细分析。结合国内外数字人文服务平台的发展现状,提出高校图书馆在建设数字人文服务平台方面的几点思考... 文章以国际数字人文中心联盟网站(centerNet)上登记的数字人文服务平台为调查对象,对其地域分布及组织构成、资源及服务情况进行详细分析。结合国内外数字人文服务平台的发展现状,提出高校图书馆在建设数字人文服务平台方面的几点思考及建议。 展开更多
关键词 数字人文服务 高校图书馆 centernet
原文传递
基于关键点的Anchor Free目标检测模型综述 被引量:13
8
作者 郑婷婷 杨雪 戴阳 《计算机系统应用》 2020年第8期1-8,共8页
目标检测是计算机视觉应用的基础,基于锚框的一些目标检测算法已难以满足目标检测中对目标处理的效率、性能等诸多方面的要求,而anchor free方法逐渐广泛应用于目标检测.本文首先重点介绍了CornerNet、CenterNet、FCOS模型的一系列基于... 目标检测是计算机视觉应用的基础,基于锚框的一些目标检测算法已难以满足目标检测中对目标处理的效率、性能等诸多方面的要求,而anchor free方法逐渐广泛应用于目标检测.本文首先重点介绍了CornerNet、CenterNet、FCOS模型的一系列基于关键点的anchor free目标检测方法,综述了算法思路及其优缺点;然后分别对基于锚框和基于关键点的目标检测算法在同一个数据集上作了性能比较和分析;最后对基于关键点的目标检测进行了总结,并展望了目标检测的未来发展方向. 展开更多
关键词 目标检测 关键点 anchor free CornerNet centernet FCOS 锚框
下载PDF
基于CenterNet的密集场景下多苹果目标快速识别方法 被引量:12
9
作者 杨福增 雷小燕 +2 位作者 刘志杰 樊攀 闫彬 《农业机械学报》 EI CAS CSCD 北大核心 2022年第2期265-273,共9页
为提高苹果采摘机器人的识别效率和环境适应性,使其能在密集场景下对多苹果目标进行快速、精确识别,提出了一种密集场景下多苹果目标的快速识别方法。该方法借鉴“点即是目标”的思路,通过预测苹果的中心点及该苹果的宽、高尺寸,实现苹... 为提高苹果采摘机器人的识别效率和环境适应性,使其能在密集场景下对多苹果目标进行快速、精确识别,提出了一种密集场景下多苹果目标的快速识别方法。该方法借鉴“点即是目标”的思路,通过预测苹果的中心点及该苹果的宽、高尺寸,实现苹果目标的快速识别;通过改进CenterNet网络,设计了Tiny Hourglass24轻量级骨干网络,同时优化残差模块提高了目标识别速度。试验结果表明,该方法在非密集场景下(即近距离场景)测试集的识别平均精度(Average precision,AP)为98.90%,F1值为96.39%;在密集场景下(即远距离场景)测试集的识别平均精度为93.63%,F1值为92.91%,单幅图像平均识别时间为0.069 s。通过与YOLO v3、CornerNetLite网络在两类测试集下的识别效果进行对比,该方法在密集场景测试集上比YOLO v3和CornerNetLite网络的平均精度分别提高了4.13、29.03个百分点;单幅图像平均识别时间比YOLO v3减少0.04 s、比CornerNetLite减少0.646 s。该方法无需使用锚框(Anchor box)和非极大值抑制后处理,可为苹果采摘机器人在密集场景下快速准确识别多苹果目标提供技术支撑。 展开更多
关键词 采摘机器人 密集场景 多苹果识别 Tiny Hourglass24 centernet
下载PDF
采用改进CenterNet模型检测群养生猪目标 被引量:13
10
作者 房俊龙 胡宇航 +1 位作者 戴百生 吴志东 《农业工程学报》 EI CAS CSCD 北大核心 2021年第16期136-144,共9页
为实现对群养环境下生猪个体目标快速精准的检测,该研究提出了一种针对群养生猪的改进型目标检测网络MF-CenterNet(MobileNet-FPN-CenterNet)模型,为确保目标检测的精确度,该模型首先以无锚式的CenterNet为基础结构,通过引入轻量级的Mob... 为实现对群养环境下生猪个体目标快速精准的检测,该研究提出了一种针对群养生猪的改进型目标检测网络MF-CenterNet(MobileNet-FPN-CenterNet)模型,为确保目标检测的精确度,该模型首先以无锚式的CenterNet为基础结构,通过引入轻量级的MobileNet网络作为模型特征提取网络,以降低模型大小和提高检测速度,同时加入特征金字塔结构FPN(Feature Pyramid Networks)以提高模型特征提取能力,在保证模型轻量化、实时性的同时,提高遮挡目标和小目标的检测精度。以某商业猪场群养生猪录制视频作为数据源,采集视频帧1683张,经图像增强后共得到6732张图像。试验结果表明,MF-CenterNet模型大小仅为21 MB,满足边缘计算端的部署,同时对生猪目标检测平均精确度达到94.30%,检测速度达到69帧/s,相较于Faster-RCNN、SSD、YOLOv3、YOLOv4目标检测网络模型,检测精度分别提高了6.39、4.46、6.01、2.74个百分点,检测速度分别提高了54、47、45、43帧/s,相关结果表明了该研究所提出的改进型的轻量级MF-CenterNet模型,能够在满足目标检测实时性的同时提高对群养生猪的检测精度,为生产现场端的群养生猪行为实时检测与分析提供了有效方法。 展开更多
关键词 计算机视觉 图像处理 群养生猪 目标检测 MobileNet FPN centernet
下载PDF
基于改进CenterNet的航拍绝缘子缺陷实时检测模型 被引量:10
11
作者 李发光 伊力哈木·亚尔买买提 《计算机科学》 CSCD 北大核心 2022年第5期84-91,共8页
针对无人机在电力巡检过程中对绝缘子及其缺陷检测的准确率较低、实时性较差的问题,提出一种改进CenterNet的绝缘子缺陷检测模型。首先,使用轻量级网络EfficientNet-B0代替原始模型的特征提取网络ResNet18,在保证模型提取能力的同时加... 针对无人机在电力巡检过程中对绝缘子及其缺陷检测的准确率较低、实时性较差的问题,提出一种改进CenterNet的绝缘子缺陷检测模型。首先,使用轻量级网络EfficientNet-B0代替原始模型的特征提取网络ResNet18,在保证模型提取能力的同时加快了其推理速度;其次,搭建特征加强模块(Feature Enhancement Module,FEM),并对经过上采样后的特征通道权重进行合理分配,抑制无效特征,并借鉴FPN(Feature Pyramid Networks)融合浅层与深层特征,使特征层信息更加丰富;然后在CenterNet-Head中引入空间和通道混合的注意力机制CA(Coordinate Attention),使类别和位置信息的预测更加准确;最后,使用Soft-NMS解决在模型检测过程中由中心点预测不准导致的“单目标多框”问题。实验结果表明,改进的CenterNet比原始模型的精度提高了11.92%,速度提高了8.95 FPS,模型大小减小了54 MB。与其他检测模型相比,改进模型的精度与速度均有提高,证明了其实时性和鲁棒性。 展开更多
关键词 绝缘子 缺陷检测 特征融合 注意力机制 centernet
下载PDF
基于改进CenterNet的水下目标检测算法 被引量:7
12
作者 王蓉蓉 蒋中云 《激光与光电子学进展》 CSCD 北大核心 2023年第2期229-238,共10页
针对常规目标检测器检测水下目标时存在特征提取困难、目标漏检等问题,提出一种改进CenterNet的水下目标检测算法。首先,使用高分辨率人体姿态估计网络HRNet代替CenterNet模型中的Hourglass-104骨干网络,降低模型参数量,提升网络推理速... 针对常规目标检测器检测水下目标时存在特征提取困难、目标漏检等问题,提出一种改进CenterNet的水下目标检测算法。首先,使用高分辨率人体姿态估计网络HRNet代替CenterNet模型中的Hourglass-104骨干网络,降低模型参数量,提升网络推理速度;其次,引入瓶颈注意力模块,在空间维度及通道维度进行特征增强,使网络关注重要目标特征信息,提高检测精度;最后,构建特征融合模块,融合网络内部丰富的语义信息和空间位置信息,并利用感受野模块增强融合后的特征,提高网络多尺度目标检测能力。在URPU水下目标检测数据集上进行实验,与CenterNet相比,所提算法的检测精度可达77.4%,提升1.5个百分点,检测速度为7 frame/s,提升35.6%,参数量为30.4 MB,压缩84.1%,同时与其他主流目标检测算法相比具有更高的检测精度,在水下目标检测任务上更具优势。 展开更多
关键词 机器视觉 水下目标检测 centernet 高分辨率网络 注意力机制 特征融合
原文传递
基于改进CenterNet的机械臂抓取检测 被引量:10
13
作者 王勇 陈荟西 冯雨齐 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期3242-3250,共9页
在机械臂的抓取检测中,基于Anchor-based的方法需要考虑很多超参数的选择和设计,难以有效提高算法整体性能。针对该问题,本文将抓取检测转换为关键点检测问题,基于CenterNet提出一种改进的抓取检测模型。首先,该模型重点解决寻找抓取框... 在机械臂的抓取检测中,基于Anchor-based的方法需要考虑很多超参数的选择和设计,难以有效提高算法整体性能。针对该问题,本文将抓取检测转换为关键点检测问题,基于CenterNet提出一种改进的抓取检测模型。首先,该模型重点解决寻找抓取框中心点的问题,其本质是对中心点进行关键点估计,从而降低抓取检测的复杂程度;其次,采用HourglassNet神经网络提取深层特征;然后,为了使模型能聚焦抓取检测中物体的重要特征,设计一种视觉注意力机制;最后,生成关键点的高斯热力图和嵌入式向量,并将抓取框的中心点设置为检测出的关键点位置,将抓取框的中心点偏移量,长,宽以及旋转角分别设置为嵌入式向量中的值,从而有效解决了这些超参数的设置问题。研究结果表明:在康奈尔抓取数据集上进行图像分割和对象分割实验,准确率分别达到了98.3%和96.7%;本文方法通过计算获得一些较优的参数而不是采用先验参数,与其他基于Anchor-free的方法相比,提高了检测精度,而且其计算精度超过一些常用的基于Anchor based的模型的精度。 展开更多
关键词 抓取检测 关键点检测 centernet Anchor-free
下载PDF
改进CenterNet在遥感图像目标检测中的应用 被引量:5
14
作者 田壮壮 张恒伟 +4 位作者 王坤 刘盛启 邹前进 赵镇 陈育斌 《遥感学报》 EI CSCD 北大核心 2023年第12期2706-2715,共10页
为了提高遥感图像目标检测的效率及精度,本文提出了一种基于改进CenterNet的遥感图像目标检测方法。基于CenterNet的检测框架,该方法能够降低目标检测所需要的步骤,减少对锚框的依赖。而在CenterNet的基础上,所提方法通过采用带有转置... 为了提高遥感图像目标检测的效率及精度,本文提出了一种基于改进CenterNet的遥感图像目标检测方法。基于CenterNet的检测框架,该方法能够降低目标检测所需要的步骤,减少对锚框的依赖。而在CenterNet的基础上,所提方法通过采用带有转置卷积的ResNet作为骨干网络,降低了骨干网络的参数数量;然后针对训练用的热力图标签,提出了针对中心点设计的高斯核适用范围边长的计算方法;最后利用注意力机制,提高所提取特征中目标区域特征的有效性。在公开的高分辨率遥感图像上的实验结果表明,3种改进措施将目标检测的精度提高了4.0%,与此同时所需的检测时间降低为原来的31.9%。与其他对比方法相比,所提方法在精度和速度上均有一定的优势,表明所提方法在遥感图像目标检测中具有一定的实用性。 展开更多
关键词 遥感图像 目标检测 深度学习 centernet 注意力机制
原文传递
多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法 被引量:7
15
作者 李晨瑄 顾佼佼 +2 位作者 王磊 钱坤 冯泽钦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第10期2006-2019,共14页
反舰导弹对舰船要害部位的精确打击能力是精确制导武器的关键技术之一。针对反舰导弹导引头对舰船要害部位检测精度低、特征提取能力不足,预测框的处理降低检测速度等问题,提出了一种多尺度特征融合的Anchor-Free轻量化舰船要害部位检... 反舰导弹对舰船要害部位的精确打击能力是精确制导武器的关键技术之一。针对反舰导弹导引头对舰船要害部位检测精度低、特征提取能力不足,预测框的处理降低检测速度等问题,提出了一种多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法。由于舰船要害部位检测数据具有多尺度、多角度特性,引入多尺度特征融合模块,综合利用不同感受野的检测信息,优化特征提取;利用高效轻量化注意力机制改进Hourglass结构中的跨层连接,提升检测精度,降低算法总参数量;使用迁移学习有效提升算法收敛效果。在建立的舰船要害部位检测数据集和公开的PASCAL VOC数据集进行实验,检测准确率分别提升了4.41%和5.57%,分析算法参数与运算量,设计了模块消融实验,论证了所提算法的有效性。 展开更多
关键词 目标检测 Anchor-Free算法 注意力机制 特征融合 centernet 反舰导弹
下载PDF
基于改进CenterNet的自动驾驶小目标检测 被引量:6
16
作者 于方程 张小俊 +1 位作者 张明路 赵天亮 《电子测量技术》 北大核心 2022年第15期115-122,共8页
自动驾驶领域主流目标检测算法对小目标检测效果差,给行车安全带来了威胁,对单阶段无描框CenterNet算法进行改进以解决此问题。首先,替换原主干网络为具有分裂注意力机制的ResNeSt50网络,并将ReLU激活函数升级为FReLU,以极少的额外计算... 自动驾驶领域主流目标检测算法对小目标检测效果差,给行车安全带来了威胁,对单阶段无描框CenterNet算法进行改进以解决此问题。首先,替换原主干网络为具有分裂注意力机制的ResNeSt50网络,并将ReLU激活函数升级为FReLU,以极少的额外计算开销强化了特征提取效果;然后提出轻量级网络PASN融合不同尺度的语义特征,并在浅层特征输入端引入空间池化金字塔(SPP)模块强化小目标信息的表达;最后在Kitti数据集进行随机多尺度输入训练。验证集结果表明改进后算法的FPS达到37.7满足实时性要求,小目标检测精度较原算法提12.9%,平均检测精度提升13.9%,同时检测速度与精度均高于主流算法YOLOv4;在实车上每秒可检测31帧图像,为自动驾驶技术发展提供有力支持,具有工程应用价值。 展开更多
关键词 自动驾驶 小目标 无描框 分裂注意力 centernet
下载PDF
基于改进CenterNet的竹条表面缺陷检测方法 被引量:7
17
作者 高钦泉 黄炳城 +1 位作者 刘文哲 童同 《计算机应用》 CSCD 北大核心 2021年第7期1933-1938,共6页
在竹条表面缺陷检测中,竹条表面缺陷形状各异,成像环境脏乱,现有基于卷积神经网络(CNN)的目标检测模型面对这样特定的数据时并不能很好地发挥神经网络的优势;而且竹条来源复杂且有其他条件限制,因此没办法采集所有类型的数据,导致竹条... 在竹条表面缺陷检测中,竹条表面缺陷形状各异,成像环境脏乱,现有基于卷积神经网络(CNN)的目标检测模型面对这样特定的数据时并不能很好地发挥神经网络的优势;而且竹条来源复杂且有其他条件限制,因此没办法采集所有类型的数据,导致竹条表面缺陷数据量少到CNN不能充分学习。针对这些问题,提出一种专门针对竹条表面缺陷的检测网络。该网络的基础框架为CenterNet,而且为提高CenterNet在较少的竹条表面缺陷数据中的检测性能,设计了一种基于从零开始训练的辅助检测模块:在网络开始训练时,冻结采用预训练模型的CenterNet部分,并针对竹条的缺陷特点从零开始训练辅助检测模块;待辅助检测模块损失趋于稳定时,通过一种注意力机制的连接方式将该模块与采用预训练的主干部分进行融合。将所提检测网络与CenterNet以及目前常用于工业检测的YOLO v3在相同训练测试集上进行训练和测试。实验结果表明,所提检测网络的平均精度均值(mAP)在竹条表面缺陷检测数据集上比YOLO v3和CenterNet的mAP分别提高了16.45和9.96个百分点。所提方法能够针对形状各异的竹条表面缺陷进行有效检测,且没有增加过多的时耗,在实际工业运用中具有很好的效果。 展开更多
关键词 目标检测 缺陷检测 注意力机制 卷积神经网络 深度学习 centernet
下载PDF
基于中心点回归的大场景SAR图像舰船检测方法 被引量:6
18
作者 崔宗勇 王晓雅 +2 位作者 施君南 曹宗杰 杨建宇 《电波科学学报》 CSCD 北大核心 2022年第1期153-161,共9页
合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测在军事和民用领域有着重要的应用.然而随着SAR图像成像能力的提升,SAR成像场景越来越大,舰船目标检测存在两个难点:一是舰船目标在整幅图像中所占比例极小,很难与周围背景分... 合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测在军事和民用领域有着重要的应用.然而随着SAR图像成像能力的提升,SAR成像场景越来越大,舰船目标检测存在两个难点:一是舰船目标在整幅图像中所占比例极小,很难与周围背景分开;二是靠岸舰船目标通常密集排列,目标之间难以区分.目前常用基于锚框的检测方法容易造成大场景SAR图像中舰船目标的漏检.为解决上述问题,本文提出了基于目标中心点的大场景SAR图像舰船目标检测方法.在进行海陆快速分割的基础上,采用CenterNet无锚框检测器,通过关键点估计来定位目标的中心点,并由中心点的信息回归得到目标边界来实现目标检测,从而有效避免了基于锚框的检测方法可能存在的漏检问题.基于公开数据集SAR-ship-Dataset的实验表明,本文方法能够精确检测大场景SAR图像中的舰船目标,检测率达到92.4%;针对密集排列目标,相较于SSD、YOLO、Fast R-CNN等方法,本文方法也能够获取最优检测性能. 展开更多
关键词 大场景 SAR图像 海陆快速分割 centernet 舰船检测
下载PDF
基于两类神经网络算法在输电线路中的缺陷识别研究 被引量:2
19
作者 张胜 《长江信息通信》 2023年第9期201-204,共4页
针对无人机输电线路巡检图像判读这一问题,文章采用典型的Twostage Cascade R-CNN和Onestage CenterNet两种算法模型分别对绝缘子爆片、鸟窝、线上异物、线上悬挂气球、线上悬挂风筝5类输电线路缺陷进行了识别实验。结果表明,两种模型... 针对无人机输电线路巡检图像判读这一问题,文章采用典型的Twostage Cascade R-CNN和Onestage CenterNet两种算法模型分别对绝缘子爆片、鸟窝、线上异物、线上悬挂气球、线上悬挂风筝5类输电线路缺陷进行了识别实验。结果表明,两种模型对选择的5类缺陷的识别平均值均能维持一个较高水平,且CenterNet算法模型的各项指标更好,在后续实际应用中优势更加突出。 展开更多
关键词 输电线路 神经网络算法 缺陷识别 Cascade R-CNN centernet
下载PDF
基于CenterNet的跑步姿态鉴别系统的设计
20
作者 周万珍 袁志鑫 王建霞 《河北工业科技》 CAS 2024年第1期10-16,共7页
为了改善目前大众跑步姿势普遍不规范的现状,提出了一种基于CenterNet的跑步姿态鉴别系统。首先,通过截图、拍照的方式自制数据集,并对数据集进行清洗、标注和分析,消除数据无关信息与简化数据。其次,引入多尺度通道注意力机制与添加十... 为了改善目前大众跑步姿势普遍不规范的现状,提出了一种基于CenterNet的跑步姿态鉴别系统。首先,通过截图、拍照的方式自制数据集,并对数据集进行清洗、标注和分析,消除数据无关信息与简化数据。其次,引入多尺度通道注意力机制与添加十字星变形卷积2种方式改进CenterNet算法模型,将动作图像转化为数字信息和特征向量,并以此为基础,利用KNN(K-nearest neighbors)算法对跑步姿态类型进行分类。最后,与经典模型方案进行对比,验证改进CenterNet算法鉴别系统的有效性。结果表明:改进的CenterNet模型的精确率与召回率都有所提升,其参数量与计算量降低。所提算法模型能够对大多数不良姿势作出及时、准确反馈,有效帮助跑步爱好者发现问题,从而改善跑步姿态、提高运动效率、预防伤病。 展开更多
关键词 计算机图像处理 人体行为识别 跑步姿态 centernet 人体关节 注意力机制
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部