期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
电力系统中非线性奇异现象的研究 被引量:18
1
作者 邓集祥 马景兰 《电力系统自动化》 EI CSCD 北大核心 1999年第22期1-4,共4页
基于低频振荡中的Hopf分歧现象的研究,把发电机的模型扩展到四阶,利用中心流形理论,集中研究了励磁系统参数变化时,系统低频振荡中的非线性奇异现象。研究表明,在各种运行方式下,励磁系统参数变化时,系统出现的都是亚临界分歧,... 基于低频振荡中的Hopf分歧现象的研究,把发电机的模型扩展到四阶,利用中心流形理论,集中研究了励磁系统参数变化时,系统低频振荡中的非线性奇异现象。研究表明,在各种运行方式下,励磁系统参数变化时,系统出现的都是亚临界分歧,即常规线性化分析所得到的增幅性低频振荡的范围将扩展到S平面的左半平面,稳定域由于亚临界分歧的出现将缩小。 展开更多
关键词 低频振荡 电力系统 稳定性 奇异现象 非线性
下载PDF
汽车半主动悬架的非线性动力学分析 被引量:9
2
作者 宋作军 《中国机械工程》 EI CAS CSCD 北大核心 2016年第20期2835-2839,共5页
基于弹簧、减振器及轮胎的非线性方程,运用现代非线性动力学理论,对双质量块形式的悬架模型进行了稳定性分析。根据Hurwitz代数判据,使用MATLAB软件计算得到悬架系统的双Hopf分岔;依据中心流形理论,将系统降至二维,并利用李雅普诺夫第... 基于弹簧、减振器及轮胎的非线性方程,运用现代非线性动力学理论,对双质量块形式的悬架模型进行了稳定性分析。根据Hurwitz代数判据,使用MATLAB软件计算得到悬架系统的双Hopf分岔;依据中心流形理论,将系统降至二维,并利用李雅普诺夫第一运动稳定性定理,判定系统的稳定性。最后,得到簧载质量、非簧载质量的时域响应及相图,验证了计算过程及结果的正确性,为半主动悬架系统的设计及控制提供了数据支持。 展开更多
关键词 半主动悬架 Hurwitz行列式 双Hopf分岔 非线性的 中心流形理论
下载PDF
潜艇操纵运动分叉突变特性 被引量:8
3
作者 王晓玢 孙尧 莫宏伟 《工程力学》 EI CSCD 北大核心 2009年第10期252-256,共5页
为研究潜艇失稳现象发生的机理,对潜艇垂直面操纵运动进行非线性建模,并利用分叉与突变理论方法对运动稳定性进行分析。利用中心流形理论将潜艇运动方程约化到包含原系统全部动力学特性的低维系统,分别对静态分叉和动态分叉引发的状态... 为研究潜艇失稳现象发生的机理,对潜艇垂直面操纵运动进行非线性建模,并利用分叉与突变理论方法对运动稳定性进行分析。利用中心流形理论将潜艇运动方程约化到包含原系统全部动力学特性的低维系统,分别对静态分叉和动态分叉引发的状态突变进行了分析,并通过数值仿真验证。仿真结果证明:潜艇在垂直面内以高速大舵角作强机动时将发生跨临界分叉和Hopf分叉,并导致系统状态在分叉点处产生突变。此现象揭示了潜艇动力学模型中非线性项的影响,并为操纵控制系统的设计提供了必要理论依据。 展开更多
关键词 潜艇 突变 中心流形理论 跨临界分叉 HOPF分叉
原文传递
一个金融混沌系统的动力学分析及混沌控制
4
作者 郭碧垚 周艳 刘宇 《内蒙古农业大学学报(自然科学版)》 CAS 2023年第4期55-64,共10页
分析了一个非线性金融混沌系统的复杂动力学及其混沌控制。借助于中心流形和规范形理论获得了系统双曲平衡点和零/双零平衡点的稳定性,并利用分岔理论证明了系统Hopf分岔的存在性。继而引入滑动模块控制方法在非线性金融混沌系统中的应... 分析了一个非线性金融混沌系统的复杂动力学及其混沌控制。借助于中心流形和规范形理论获得了系统双曲平衡点和零/双零平衡点的稳定性,并利用分岔理论证明了系统Hopf分岔的存在性。继而引入滑动模块控制方法在非线性金融混沌系统中的应用,研究了系统闭轨分岔问题。最后通过数值模拟,得到系统的动力学特性,证明了该方法的可靠性。 展开更多
关键词 金融混沌系统 滑动模块控制 HOPF分岔 第一李雅普诺夫系数 中心流形理论
原文传递
基于中心流形理论的小水电并网系统Hopf分岔分析 被引量:3
5
作者 张中华 付景超 李鹏松 《振动与冲击》 EI CSCD 北大核心 2015年第2期50-54,共5页
针对小水电并网系统,用Matcont软件搜寻系统的Hopf分岔点绘制分岔图;利用中心流形理论将高维电力系统降到二维模型,并通过计算二维模型分岔稳定性指标的正负判定原系统Hopf分岔类型。结果表明,分岔稳定性指标大于零时电压失稳,小于零时... 针对小水电并网系统,用Matcont软件搜寻系统的Hopf分岔点绘制分岔图;利用中心流形理论将高维电力系统降到二维模型,并通过计算二维模型分岔稳定性指标的正负判定原系统Hopf分岔类型。结果表明,分岔稳定性指标大于零时电压失稳,小于零时电压稳定。用Matlab软件对讨论结果进行数值仿真,证明理论结果的正确性。 展开更多
关键词 电力系统 HOPF 分岔 中心流形理论 电压稳定性
下载PDF
具有线性捕捞成本的渔业资源的连续动力模型的稳定性分析 被引量:3
6
作者 顾恩国 史晓琳 但威 《中南民族大学学报(自然科学版)》 CAS 北大核心 2015年第4期119-122,128,共5页
为了控制渔业资源保持在一个平衡的状态,在假设捕捞成本函数为捕捞量线性函数的基础上,以及考虑鱼群自然增长及其市场价格随供需变化的情况下,建立了渔业资源存储量、捕捞量、市场价格三者的相互作用的动力学模型,研究该连续系统的正平... 为了控制渔业资源保持在一个平衡的状态,在假设捕捞成本函数为捕捞量线性函数的基础上,以及考虑鱼群自然增长及其市场价格随供需变化的情况下,建立了渔业资源存储量、捕捞量、市场价格三者的相互作用的动力学模型,研究该连续系统的正平衡点的存在性及稳定性. 展开更多
关键词 正平衡点 中心流形定理 稳定性 Routh-Hurwitz定理
下载PDF
基于中心流形理论的液体火箭POGO振动系统Hopf分岔点特性 被引量:2
7
作者 陈杰 方勃 张业伟 《沈阳航空航天大学学报》 2015年第6期34-38,共5页
火箭飞行过程中不安定因素主要是液体火箭POGO振动所引起的低频振动,其由火箭纵向结构壳体与液体燃料发生共振所产生的。液体火箭POGO振动其实质就是流固耦合问题,为了解决这一难题同时降低成本,大多数学者采用理论计算与实验模拟相结... 火箭飞行过程中不安定因素主要是液体火箭POGO振动所引起的低频振动,其由火箭纵向结构壳体与液体燃料发生共振所产生的。液体火箭POGO振动其实质就是流固耦合问题,为了解决这一难题同时降低成本,大多数学者采用理论计算与实验模拟相结合的方法。然而,其计算过程的简化过于复杂。通过质量守恒,动量定理以及牛顿第二定律建立了液体火箭POGO振动的非线性动力学模型,利用中心流形理论进行系统降维,并通过附属正规形法获得分岔方程,研究系统Hopf分岔点,得出在泵气蚀刚度系数的某一范围内,分岔参数的幂运算对分岔类型的判断有重要影响,从而为抑制液体火箭POGO振动的发生提供相关理论依据。 展开更多
关键词 中心流形法 液体火箭POGO振动 HOPF分岔 复数正规形 降维
下载PDF
基于中心流形理论的四轮转向汽车Hopf分岔分析 被引量:2
8
作者 宋作军 《振动与冲击》 EI CSCD 北大核心 2016年第13期219-223,共5页
以四轮转向汽车(4WS)为研究对象,利用分析力学方法,建立了二自由度动力模型。利用Hurwitz代数判据,对4WS系统Hopf分岔进行了计算,得到分岔点。利用中心流形理论将高维4WS汽车系统降到二维,并通过计算二维分岔稳定性指标的正负判定原系统... 以四轮转向汽车(4WS)为研究对象,利用分析力学方法,建立了二自由度动力模型。利用Hurwitz代数判据,对4WS系统Hopf分岔进行了计算,得到分岔点。利用中心流形理论将高维4WS汽车系统降到二维,并通过计算二维分岔稳定性指标的正负判定原系统Hopf分岔的类型。利用Matlab软件对系统进行了仿真。结果表明,4WS汽车在一定的参数组合下出现转向自动摆动的性质,对振动的控制研究具有重要的参考价值。 展开更多
关键词 四轮转向 HOPF分岔 Hurwitz行列式 中心流形理论
下载PDF
A Schistosomiasis Model with Diffusion Effects
9
作者 Yujiang Liu Hengmin Lv Shujing Gao 《Applied Mathematics》 2016年第7期587-598,共12页
In this paper, we propose a schistosomiasis model in which two human groups share the water contaminated by schistosomiasis and migrate each other. The dynamical behavior of the model is studied. By calculation, the t... In this paper, we propose a schistosomiasis model in which two human groups share the water contaminated by schistosomiasis and migrate each other. The dynamical behavior of the model is studied. By calculation, the threshold value is given, which determines whether the disease will be extinct or not. The existence and global stability of the parasite-free equilibrium and the locally stability of the endemic equilibrium are discussed. Numerical simulations indicate that the diffusion from the mild endemic village to severe endemic village is benefit to control schistosomiasis transmission;otherwise it is bad for the disease control. 展开更多
关键词 Schistosomiasis Model DIFFUSION Threshold Value center manifold theory
下载PDF
Global and Bifurcation Analysis of an HIV Pathogenesis Model with Saturated Reverse Function
10
作者 Liu Yong-qi Meng Xiao-ying Shi Shao-yun 《Communications in Mathematical Research》 CSCD 2019年第4期301-317,共17页
In this paper,an HIV dynamics model with the proliferation of CD4 T cells is proposed.The authors consider nonnegativity,boundedness,global asymptotic stability of the solutions and bifurcation properties of the stead... In this paper,an HIV dynamics model with the proliferation of CD4 T cells is proposed.The authors consider nonnegativity,boundedness,global asymptotic stability of the solutions and bifurcation properties of the steady states.It is proved that the virus is cleared from the host under some conditions if the basic reproduction number R0 is less than unity.Meanwhile,the model exhibits the phenomenon of backward bifurcation.We also obtain one equilibrium is semi-stable by using center manifold theory.It is proved that the endemic equilibrium is globally asymptotically stable under some conditions if R0 is greater than unity.It also is proved that the model undergoes Hopf bifurcation from the endemic equilibrium under some conditions.It is novelty that the model exhibits two famous bifurcations,backward bifurcation and Hopf bifurcation.The model is extended to incorporate the specific Cytotoxic T Lymphocytes(CTLs)immune response.Stabilities of equilibria and Hopf bifurcation are considered accordingly.In addition,some numerical simulations for justifying the theoretical analysis results are also given in paper. 展开更多
关键词 HIV model GLOBAL asymptotical stability center manifold theory HOPF BIFURCATION BACKWARD BIFURCATION
下载PDF
一类电机系统的分岔分析与Hopf分岔控制 被引量:1
11
作者 张中华 袁惠群 张宇白 《兵工学报》 EI CAS CSCD 北大核心 2013年第8期1051-1056,共6页
针对无刷直流电机系统等效非线性动力系统,运用中心流形理论和Hopf分岔理论研究了系统存在的分岔行为,并设计状态反馈控制器对系统进行Hopf分岔控制,分析了控制参数对Hopf分岔点位置、分岔类型以及分岔周期解振幅的影响。研究结果表明:... 针对无刷直流电机系统等效非线性动力系统,运用中心流形理论和Hopf分岔理论研究了系统存在的分岔行为,并设计状态反馈控制器对系统进行Hopf分岔控制,分析了控制参数对Hopf分岔点位置、分岔类型以及分岔周期解振幅的影响。研究结果表明:控制器中的线性控制部分能改变原系统的Hopf分岔点位置,甚至使Hopf分岔点消失;控制器中的非线性控制部分则可改变原系统的分岔类型及分岔周期解振幅的大小。数值仿真证明控制器设计的有效性。 展开更多
关键词 电气工程 中心流形理论 叉形分岔 HOPF分岔 Hopf分岔控制
下载PDF
商务网站成长中时滞效应的周期波动分析
12
作者 万校基 邓贵仕 +1 位作者 白杨 薛绍伟 《运筹与管理》 CSSCI CSCD 北大核心 2012年第6期139-145,170,共8页
商务网站经常受到竞争对手及自身发展策略影响而发生波动、甚至周期性波动变化,掌握这种变化规律对于网站运营商制定合理有效决策非常关键。本文基于商务网站"强者愈强"的马太效应,提出了网站成长周期的"时滞效应"... 商务网站经常受到竞争对手及自身发展策略影响而发生波动、甚至周期性波动变化,掌握这种变化规律对于网站运营商制定合理有效决策非常关键。本文基于商务网站"强者愈强"的马太效应,提出了网站成长周期的"时滞效应",建立了一类反映时滞效应的竞争模型,利用中心流形理论和规范式方法得到了决定商务网站发展的稳定性与周期波动性的具体表达公式,通过数值模拟验证了结论的有效性与可行性。该研究为网站运营商在认识自身发展规律和制定相关发展策略上提供了参考与依据。 展开更多
关键词 管理科学与工程 周期波动 中心流形定理 商务网站 时滞效应
下载PDF
相对转动系统的Hopf分岔分析及分岔控制
13
作者 张中华 李鹏松 +1 位作者 付景超 盛桂全 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第5期961-968,共8页
考虑一类非线性摩擦阻尼力作用下相对转动系统的Hopf分岔类型及分岔控制问题.先运用中心流形理论将原系统降维,通过计算降维后系统的稳定性指标判定原系统的Hopf分岔类型;再设计基于Washout滤波器的立方非线性项控制器对系统进行Hopf分... 考虑一类非线性摩擦阻尼力作用下相对转动系统的Hopf分岔类型及分岔控制问题.先运用中心流形理论将原系统降维,通过计算降维后系统的稳定性指标判定原系统的Hopf分岔类型;再设计基于Washout滤波器的立方非线性项控制器对系统进行Hopf分岔控制,并讨论控制参数对Hopf分岔类型及极限环幅值的影响.结果表明,当控制参数满足一定条件时,可将原系统具有潜在威胁的亚临界Hopf分岔控制为超临界Hopf分岔,保证系统正常运行,并且运行幅值随控制参数的减小而减小. 展开更多
关键词 相对转动 HOPF分岔 分岔控制 中心流形理论 Washout滤波器
下载PDF
Hopf分岔控制理论在单机无穷大电力系统中的应用
14
作者 张中华 李鹏松 +1 位作者 付景超 邓冠男 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第1期37-41,62,共6页
针对一类单机无穷大电力系统,采用Matcont软件搜寻到系统的Hopf分岔点,利用中心流形定理和分岔稳定性指标判定方法确定系统的分岔类型,基于wash-out滤波器原理设计了非线性反馈控制器,通过调节影响系统稳定性的励磁系统等值放大倍数,探... 针对一类单机无穷大电力系统,采用Matcont软件搜寻到系统的Hopf分岔点,利用中心流形定理和分岔稳定性指标判定方法确定系统的分岔类型,基于wash-out滤波器原理设计了非线性反馈控制器,通过调节影响系统稳定性的励磁系统等值放大倍数,探讨了控制参数对Hopf分岔类型的影响,并利用Matlab软件对理论结果进行数值模拟.结果表明,当控制参数满足给定条件时,可使原系统的亚临界Hopf分岔变为超临界Hopf分岔,使电力系统结构更稳定. 展开更多
关键词 电力系统 HOPF分岔 Hopf分岔控制 中心流形定理 wash-out滤波器
原文传递
二元机翼系统的极限环颤振与混沌运动
15
作者 何东平 黄文韬 王勤龙 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第3期87-95,共9页
运用微分方程定性理论和分支理论对不可压缩流中具有二次非线性俯仰刚度的二元机翼系统在非零平衡点发生极限环颤振和混沌运动进行探讨。首先应用中心流形理论将四维系统进行降维,用高维Hopf分支定理确定系统发生Hopf分叉的分叉点;然后... 运用微分方程定性理论和分支理论对不可压缩流中具有二次非线性俯仰刚度的二元机翼系统在非零平衡点发生极限环颤振和混沌运动进行探讨。首先应用中心流形理论将四维系统进行降维,用高维Hopf分支定理确定系统发生Hopf分叉的分叉点;然后通过计算系统焦点量的值来判别分叉点的稳定性和类别,并用分支问题的Liapunov第二方法给出了系统发生Hopf分叉的类型;最后采用四阶Runge-Kutta法对理论分析进行数值模拟,发现两者结果是一致的,通过数值分析法,得到了系统通向混沌的道路,以及在混沌区域存在周期为5的周期运动。结果表明:系统的分叉点为一阶稳定细焦点且发生超临界Hopf分叉,产生稳定极限环;系统通向混沌的道路为倍周期分叉。 展开更多
关键词 非线性系统 倍周期分叉 极限环颤振 中心流形理论 分叉点
下载PDF
对球面平行流的扰动
16
作者 李淑敏 《上海工程技术大学学报》 CAS 2006年第1期21-26,共6页
对球面族上的平行流进行了一般的2n+1次齐次扰动,在x2+y2+z2=h(>0)是扰动系统的首次积分的情况下,运用平均方法及中心流形定理,给出了扰动系统在球面上出现极限环的一般情况。
关键词 平均方法 中心流形定理 首次积分 极限环
下载PDF
基于中心流形理论的风力发电系统非线性控制策略研究
17
作者 刘军 段韬 《电气技术》 2015年第8期1-1,2-6,共6页
针对基于PI控制的风力发电系统难以精确的实现大范围的最大风能跟踪控制。该文把中心流形理论的零动态设计原理和滑模变结构控制策略相结合,设计了新型非线性控制器。首先运用中心流形理论的零动态设计原理将非线性风力发电系统模型线性... 针对基于PI控制的风力发电系统难以精确的实现大范围的最大风能跟踪控制。该文把中心流形理论的零动态设计原理和滑模变结构控制策略相结合,设计了新型非线性控制器。首先运用中心流形理论的零动态设计原理将非线性风力发电系统模型线性化,然后用滑模变结构控制理论对此线性系统设计控制器。仿真结果表明,在阶跃风和组合风下,风力发电机转子在较大风速变化范围内都能迅速跟踪上给定的参考转速,实现了最大风能跟踪的精确控制,而且该系统具有良好的动态性能和鲁棒性。 展开更多
关键词 永磁同步电机 组合风速 中心流形理论 滑模变结构控制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部