目的:构建含人重组牙骨质蛋白1(recombination human cementum protein1,rhCEMP1)基因的真核表达载体,观察其在酿酒酵母细胞中的表达。方法:采用PCR方法扩增rhCEMP1基因,利用定向克隆技术将rhCEMP1基因插入到中间载体pTeasy中,再进一步...目的:构建含人重组牙骨质蛋白1(recombination human cementum protein1,rhCEMP1)基因的真核表达载体,观察其在酿酒酵母细胞中的表达。方法:采用PCR方法扩增rhCEMP1基因,利用定向克隆技术将rhCEMP1基因插入到中间载体pTeasy中,再进一步转插入载体pWX530。重组的pWX530-rhCEMP1在大肠杆菌DH5α中扩增后,通过酶切电泳鉴定和DNA序列测定所构建的质粒。经鉴定正确的表达载体pWX530-rhCEMP1转入酵母感受态细胞中,酵母经氨基酸营养缺陷型筛选后培养表达。利用聚丙烯酰胺凝胶(SDS-PAGE)电泳和酶联免疫吸附测定(ELISA)分析蛋白表达情况,离子交换层析提纯蛋白。结果:构建的重组质粒成功转入酵母细胞,通过SDS-PAGE和ELISA检测rhCEMP1表达成功。结论:成功构建的含rh-CEMP1基因的真核表达载体pWX530-rhCEMP1,并能转入酵母细胞中成功表达。展开更多
The tooth root cementum is a thin, mineralized tissue covering the root dentin that is present primarily as acellular cementum on the cervical root and cellular cementum covering the apical root. While cementum shares...The tooth root cementum is a thin, mineralized tissue covering the root dentin that is present primarily as acellular cementum on the cervical root and cellular cementum covering the apical root. While cementum shares many properties in common with bone and dentin, it is a unique mineralized tissue and acellular cementum is critical for attachment of the tooth to the surrounding periodontal ligament (PDL). Resources for methodologies for hard tissues often overlook cementum and approaches that may be of value for studying this tissue. To address this issue, this report offers detailed methodology, as well as comparisons of several histological and immunohistochemical stains available for imaging the cementum-PDL complex by light microscopy. Notably, the infrequently used Alcian blue stain with nuclear fast red counterstain provided utility in imaging cementum in mouse, porcine and human teeth. While no truly unique extracellular matrix markers have been identified to differentiate cementum from the other hard tissues, immunohistochemistry for detection of bone sialoprotein (BSP), osteopontin (OPN), and dentin matrix protein 1 (DMP1) is a reliable approach for studying both acellular and cellular cementum and providing insight into developmental biology of these tissues. Histoloeical and immunohistochemical aooroaches Drovide insight on developmental biology of cementum.展开更多
Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cement...Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enppl null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enppl gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected.展开更多
文摘目的:构建含人重组牙骨质蛋白1(recombination human cementum protein1,rhCEMP1)基因的真核表达载体,观察其在酿酒酵母细胞中的表达。方法:采用PCR方法扩增rhCEMP1基因,利用定向克隆技术将rhCEMP1基因插入到中间载体pTeasy中,再进一步转插入载体pWX530。重组的pWX530-rhCEMP1在大肠杆菌DH5α中扩增后,通过酶切电泳鉴定和DNA序列测定所构建的质粒。经鉴定正确的表达载体pWX530-rhCEMP1转入酵母感受态细胞中,酵母经氨基酸营养缺陷型筛选后培养表达。利用聚丙烯酰胺凝胶(SDS-PAGE)电泳和酶联免疫吸附测定(ELISA)分析蛋白表达情况,离子交换层析提纯蛋白。结果:构建的重组质粒成功转入酵母细胞,通过SDS-PAGE和ELISA检测rhCEMP1表达成功。结论:成功构建的含rh-CEMP1基因的真核表达载体pWX530-rhCEMP1,并能转入酵母细胞中成功表达。
基金supported (in part) by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health
文摘The tooth root cementum is a thin, mineralized tissue covering the root dentin that is present primarily as acellular cementum on the cervical root and cellular cementum covering the apical root. While cementum shares many properties in common with bone and dentin, it is a unique mineralized tissue and acellular cementum is critical for attachment of the tooth to the surrounding periodontal ligament (PDL). Resources for methodologies for hard tissues often overlook cementum and approaches that may be of value for studying this tissue. To address this issue, this report offers detailed methodology, as well as comparisons of several histological and immunohistochemical stains available for imaging the cementum-PDL complex by light microscopy. Notably, the infrequently used Alcian blue stain with nuclear fast red counterstain provided utility in imaging cementum in mouse, porcine and human teeth. While no truly unique extracellular matrix markers have been identified to differentiate cementum from the other hard tissues, immunohistochemistry for detection of bone sialoprotein (BSP), osteopontin (OPN), and dentin matrix protein 1 (DMP1) is a reliable approach for studying both acellular and cellular cementum and providing insight into developmental biology of these tissues. Histoloeical and immunohistochemical aooroaches Drovide insight on developmental biology of cementum.
基金supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health (NIH) and extramural NIH funding(JLM-DE12889 and AR53102)
文摘Cementum is critical for anchoring the insertion of periodontal ligament fibers to the tooth root. Several aspects of cementogenesis remain unclear, including differences between acellular cementum and cellular cementum, and between cementum and bone. Biomineralization is regulated by the ratio of inorganic phosphate (Pi) to mineral inhibitor pyrophosphate (PPi), where local Pi and PPi concentrations are controlled by phosphatases including tissue-nonspecific alkaline phosphatase (TNAP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). The focus of this study was to define the roles of these phosphatases in cementogenesis. TNAP was associated with earliest cementoblasts near forming acellular and cellular cementum. With loss of TNAP in the Alpl null mouse, acellular cementum was inhibited, while cellular cementum production increased, albeit as hypomineralized cementoid. In contrast, NPP1 was detected in cementoblasts after acellular cementum formation, and at low levels around cellular cementum. Loss of NPP1 in the Enppl null mouse increased acellular cementum, with little effect on cellular cementum. Developmental patterns were recapitulated in a mouse model for acellular cementum regeneration, with early TNAP expression and later NPP1 expression. In vitro, cementoblasts expressed Alpl gene/protein early, whereas Enppl gene/protein expression was significantly induced only under mineralization conditions. These patterns were confirmed in human teeth, including widespread TNAP, and NPP1 restricted to cementoblasts lining acellular cementum. These studies suggest that early TNAP expression creates a low PPi environment promoting acellular cementum initiation, while later NPP1 expression increases PPi, restricting acellular cementum apposition. Alterations in PPi have little effect on cellular cementum formation, though matrix mineralization is affected.