CeOsupports were prepared by calcination or precipitation method and 5% MoO/CeOcatalysts were prepared by incipient-wetness impregnation method. The catalytic performance of the 5% MoO/CeOcatalysts toward sulfur-resis...CeOsupports were prepared by calcination or precipitation method and 5% MoO/CeOcatalysts were prepared by incipient-wetness impregnation method. The catalytic performance of the 5% MoO/CeOcatalysts toward sulfur-resistant methanation was investigated. The results showed that the Mo/Ce-1 catalysts with CeOsupport prepared by calcination method exhibited the best sulfur-resistant methanation activity and stability with CO conversion as high as 75% while the Mo/Ce-3 catalysts the poorest. The supports and catalysts were characterized by N-adsorption–desorption, temperature-programmed reduction(TPR), X-ray diffraction(XRD), Raman spectroscopy(RS) and scanning electron microscope(SEM). The results indicated that the saturated monolayer loading MoOon Ce-3 support was lower than 5% and there were some crystalline MoOparticles on the surface of the Mo/Ce-3. The preparation method of CeOhad a big influence on the specific surface area, the crystalline of CeO, and the catalytic performance of the corresponding Mo-based catalyst for sulfur-resistant methanation.展开更多
The plane exposure of support vitally affects the catalytic performance of the catalyst.In this work,CeO_(2)nanorods((110)plane exposure),nano-octahedrons((111)plane exposure)and nano-cubes((100)plane exposure)were pr...The plane exposure of support vitally affects the catalytic performance of the catalyst.In this work,CeO_(2)nanorods((110)plane exposure),nano-octahedrons((111)plane exposure)and nano-cubes((100)plane exposure)were prepared as the supports of Pt/CeO_(2)samples to investigate the effect of CeO_(2)plane exposure on total toluene oxidation.Characterizations reveal that the(110)plane of CeO_(2)is more helpful to the dispersion of Pt species,followed by(111)face.The improved dispersion of Pt species can enhance the metal-supports interaction,which promotes the electron transfer of CeO_(2)carrier to Pt nanoparticles and the adsorption-activation of O_(2),thereby facilitating the total oxidation of toluene via the Langmuir-Hinshelwood(L-H)mechanism.Therefore,Pt/CeO_(2)-r(nanorods)sample expresses excellent catalytic performance of toluene oxidation.Finally,the procedure of toluene total oxidation was studied by in-situ diffuse reflectance infrared Fourier transform(DRIFT)spectroscopy.We expect that this work can contribute to the development of an effective sample for the decomposition of volatile organic compounds(VOCs).展开更多
基金Financial supports from the National High Technology Research and Development Program of China(863 Project)(2015AA050504)the National Natural Science Foundation of China(21576203)
文摘CeOsupports were prepared by calcination or precipitation method and 5% MoO/CeOcatalysts were prepared by incipient-wetness impregnation method. The catalytic performance of the 5% MoO/CeOcatalysts toward sulfur-resistant methanation was investigated. The results showed that the Mo/Ce-1 catalysts with CeOsupport prepared by calcination method exhibited the best sulfur-resistant methanation activity and stability with CO conversion as high as 75% while the Mo/Ce-3 catalysts the poorest. The supports and catalysts were characterized by N-adsorption–desorption, temperature-programmed reduction(TPR), X-ray diffraction(XRD), Raman spectroscopy(RS) and scanning electron microscope(SEM). The results indicated that the saturated monolayer loading MoOon Ce-3 support was lower than 5% and there were some crystalline MoOparticles on the surface of the Mo/Ce-3. The preparation method of CeOhad a big influence on the specific surface area, the crystalline of CeO, and the catalytic performance of the corresponding Mo-based catalyst for sulfur-resistant methanation.
基金Project supported by the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(KJ2020A0236,KJ2018A0638,KJ2019A0079)。
文摘The plane exposure of support vitally affects the catalytic performance of the catalyst.In this work,CeO_(2)nanorods((110)plane exposure),nano-octahedrons((111)plane exposure)and nano-cubes((100)plane exposure)were prepared as the supports of Pt/CeO_(2)samples to investigate the effect of CeO_(2)plane exposure on total toluene oxidation.Characterizations reveal that the(110)plane of CeO_(2)is more helpful to the dispersion of Pt species,followed by(111)face.The improved dispersion of Pt species can enhance the metal-supports interaction,which promotes the electron transfer of CeO_(2)carrier to Pt nanoparticles and the adsorption-activation of O_(2),thereby facilitating the total oxidation of toluene via the Langmuir-Hinshelwood(L-H)mechanism.Therefore,Pt/CeO_(2)-r(nanorods)sample expresses excellent catalytic performance of toluene oxidation.Finally,the procedure of toluene total oxidation was studied by in-situ diffuse reflectance infrared Fourier transform(DRIFT)spectroscopy.We expect that this work can contribute to the development of an effective sample for the decomposition of volatile organic compounds(VOCs).