Various acidic components(MOx:phosphate,sulfate,tungstate and niobate) were loaded on Ce0.75 Zr0.25 O2 powders by an impregnation method.The as-prepared catalysts were hydrothermally treated at 760 oC for 48 h in a...Various acidic components(MOx:phosphate,sulfate,tungstate and niobate) were loaded on Ce0.75 Zr0.25 O2 powders by an impregnation method.The as-prepared catalysts were hydrothermally treated at 760 oC for 48 h in air containing 10 vol.% H2 O to obtain the aged catalysts.The catalysts were characterized by X-ray diffraction,Fourier transform infrared spectroscopy,H2 programmed-reduction,NH3 adsorption and deNOx activity measurements.The results showed that,among the catalysts investigated,the phosphated Ce0.75 Zr0.25 O2 catalyst showed the highest hydrothermal stability.The remained high acidity of the phosphated catalyst with moderate redox property helped to maintain the excellent NH3-SCR activity of hydrothermally aged catalyst.Cerium tungstate led to the poor redox property of the tungstated catalyst although the acidity of catalyst was still high.The decomposition of sulfates at temperatures higher than 600 °C restrained the usage of sulfated catalysts in high temperature conditions.The overall dehydration of niobate to niobium oxides led to the low acidity of hydrothermally aged Nb2 O5-Ce0.75 Zr0.25 O2 catalyst.展开更多
The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(...The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment.展开更多
Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali ...Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali lignin in ethanol and isopropanol systems,and explored the effects of formic acid(FA)amount,reaction time,reaction temperature and other factors on the depolymerization of alkali lignin.Among them,formic acid serves as both catalytic and in situ-hydrogen donor.Ultimately,the highest yield of bio-oil(59.28%(mass)),including 30.05%(mass)of monomer,was obtained after a reaction of FA to alkali lignin mass ratio of 4 and 240°C for 8 h.Among the monomers,the yield of Guaiacol was the highest(5.94%(mass)),followed by 2-methoxy-4-methylphenol(5.74%(mass)).This study,the modification of attapulgite was carried out to reduce the acidity while enhancing the catalytic activity for depolymerization,and the selection of hydrogen donor was investigated.A feasible pathway for lignin depolymerization research was opened.展开更多
基金supported by National Natural Science Foundation of China(51202126)Strategic Emerging Industry Development Funds of Shenzhen(JCYJ20120619152738634)
文摘Various acidic components(MOx:phosphate,sulfate,tungstate and niobate) were loaded on Ce0.75 Zr0.25 O2 powders by an impregnation method.The as-prepared catalysts were hydrothermally treated at 760 oC for 48 h in air containing 10 vol.% H2 O to obtain the aged catalysts.The catalysts were characterized by X-ray diffraction,Fourier transform infrared spectroscopy,H2 programmed-reduction,NH3 adsorption and deNOx activity measurements.The results showed that,among the catalysts investigated,the phosphated Ce0.75 Zr0.25 O2 catalyst showed the highest hydrothermal stability.The remained high acidity of the phosphated catalyst with moderate redox property helped to maintain the excellent NH3-SCR activity of hydrothermally aged catalyst.Cerium tungstate led to the poor redox property of the tungstated catalyst although the acidity of catalyst was still high.The decomposition of sulfates at temperatures higher than 600 °C restrained the usage of sulfated catalysts in high temperature conditions.The overall dehydration of niobate to niobium oxides led to the low acidity of hydrothermally aged Nb2 O5-Ce0.75 Zr0.25 O2 catalyst.
基金supported by the Introduction of Talent and Technology Cooperation Plan of Tianjin(14RCGFGX00849)
文摘The influence of sulfation on Pd/Ce0.75Zr0.25O2, Pd/Ce O2-Ti O2 and Pd/Ce O2 was investigated. Physical structure and chemical properties of different catalysts were characterized by N2 adsorption, X-ray diffraction(XRD), CO chemisorption, X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR) and X-ray fluorescence(XRF). After 10 h SO2 sulfation, it was found that the decrement on CO oxidation catalytic activity was limited on Pd/Ce0.75Zr0.25O2 compared to Pd/Ce O2-Ti O2 and Pd/Ce O2. It demonstrated that Pd/Ce0.75Zr0.25O2 was more sulfur resistant compared to the other two catalysts. After sulfur exposure, catalyst texture was not much influenced as shown by N2 adsorption and XRD, and surface Pd atoms were poisoned indicated by CO chemisorption results. Pd/Ce0.75Zr0.25O2 and Pd/Ce O2-Ti O2 exhibited less sulfur accumulation compared to Pd/Ce O2 in the sulfation process. Furthermore, XPS results clarified that surface sulfur amount, especially surface sulfates amount on the sulfated catalysts was more crucial for the deactivation in sulfur containing environment.
基金financially supported by National Natural Science Foundation of China (21774059)。
文摘Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali lignin in ethanol and isopropanol systems,and explored the effects of formic acid(FA)amount,reaction time,reaction temperature and other factors on the depolymerization of alkali lignin.Among them,formic acid serves as both catalytic and in situ-hydrogen donor.Ultimately,the highest yield of bio-oil(59.28%(mass)),including 30.05%(mass)of monomer,was obtained after a reaction of FA to alkali lignin mass ratio of 4 and 240°C for 8 h.Among the monomers,the yield of Guaiacol was the highest(5.94%(mass)),followed by 2-methoxy-4-methylphenol(5.74%(mass)).This study,the modification of attapulgite was carried out to reduce the acidity while enhancing the catalytic activity for depolymerization,and the selection of hydrogen donor was investigated.A feasible pathway for lignin depolymerization research was opened.