BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, ...BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS: Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real- time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by flow cytometric analysis. RESULTS: All pancreatic carcinoma cell lines tested expressed significantly higher levels of ABCG2 than non-malignant fibroblasts or two other malignant non- pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of five pancreatic carcinoma cell lines tested. Using flow cytometric analysis we confirmed surface expression of ABCG2 in all five lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels.CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.展开更多
The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), c...The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), catalase (CAT), peroxidase (POD)) and ultrastructure of the cells of Azolla imbricata (Roxb.) Nakai were studied. The results showed that with Hg2+ and Cd2+ increase, chlorophyll content and chlorophyll a/b value, photosynthetic O-2 evolution decreased drastically; respiration rate peaked at 2 mg/L pollutant and declined afterwards. The activities of SOD, CAT and POD increased first and decreased afterwards except the activity of POD, which decreased with the increasing of Cd2+ concentration. Ultrastructural observation showed that the extent of ultrastructural damage was much more serious with higher pollutant concentration and longer time of stress. This resulted in swelling of chloroplast, disruption and disappearance of chloroplast membrane and disintegration of chloroplasts; swelling of cristae of mitochondria, deformation and vacuolization of mitochondria; condensation of chromatin in nucleus, dispersion of nucleolus and disruption of nuclear membrane. The experimental results showed: (1) Hg2+ and Cd2+ pollution not only destroyed physiological activities, but also caused irreversible damage to its ultrastructure, thus leading the cells to death; (2) With increase in the stress of Hg2+ and Cd2+, ultrastructural damage was related to the changes of plant physiology; (3) The toxic symptoms of plant showed an evident correlation between dose and effect; (4) The toxicity of Cd2+ on A. imbricata is heavier than that of Hg2+ under the same treatment time and concentration. The lethal concentration of Hg2+ to A. imbricata ranged from 3.5 to 4 mg/L, and that of Cd2+ ranged from 3 to 3.5 mg/L. The damage of cell ultrastructure on Anabaena azollae Strasburger was observed. The results indicated that tolerance of Azolla imbricata for Hg2+ and Cd2+ was higher than that of A. imbricata.展开更多
文摘BACKGROUND: Cancer of the pancreas is the fourth leading cause of cancer death in industrialized countries. In malignancy, actively proliferating cells may be effectively targeted and killed by anti-cancer therapies, but stem cells may survive and support re-growth of the tumor. Thus, new strategies for the treatment of cancer clearly will also have to target cancer stem cells. The goal of the present study was to determine whether pancreatic carcinoma cell growth may be driven by a subpopulation of cancer stem cells. Because previous data implicated ABCG2 and CD133 as stem cell markers in hematopoietic and neural stem/progenitor cells, we analyzed the expression of these two proteins in pancreatic carcinoma cell lines. METHODS: Five established pancreatic adenocarcinoma cell lines were analyzed. Total RNA was isolated and real- time RT-PCR was performed to determine the expression of ABCG2 and CD133. Surface expression of ABCG2 and CD133 was analyzed by flow cytometric analysis. RESULTS: All pancreatic carcinoma cell lines tested expressed significantly higher levels of ABCG2 than non-malignant fibroblasts or two other malignant non- pancreatic cell lines, i.e., SaOS2 osteosarcoma and SKOV3 ovarian cancer. Elevated CD133 expression was found in two out of five pancreatic carcinoma cell lines tested. Using flow cytometric analysis we confirmed surface expression of ABCG2 in all five lines. Yet, CD133 surface expression was detectable in the two cell lines, A818-6 and PancTu1, which exhibited higher mRNA levels.CONCLUSIONS: Two stem cell markers, ABCG2 and CD133 are expressed in pancreatic carcinoma cell lines. ABCG2 and/or CD133 positive cells may represent subpopulation of putative cancer stem cells also in this malignancy. Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy, they may be a very promising target for new drug developments.
文摘The toxic effects of different gradient concentrations of Hg2+ and Cd2+ on chlorophyll content, chlorophyll a/b value, photosynthetic O-2 evolution, respiration rate, anti-oxidase system (superoxide dismulase (SOD), catalase (CAT), peroxidase (POD)) and ultrastructure of the cells of Azolla imbricata (Roxb.) Nakai were studied. The results showed that with Hg2+ and Cd2+ increase, chlorophyll content and chlorophyll a/b value, photosynthetic O-2 evolution decreased drastically; respiration rate peaked at 2 mg/L pollutant and declined afterwards. The activities of SOD, CAT and POD increased first and decreased afterwards except the activity of POD, which decreased with the increasing of Cd2+ concentration. Ultrastructural observation showed that the extent of ultrastructural damage was much more serious with higher pollutant concentration and longer time of stress. This resulted in swelling of chloroplast, disruption and disappearance of chloroplast membrane and disintegration of chloroplasts; swelling of cristae of mitochondria, deformation and vacuolization of mitochondria; condensation of chromatin in nucleus, dispersion of nucleolus and disruption of nuclear membrane. The experimental results showed: (1) Hg2+ and Cd2+ pollution not only destroyed physiological activities, but also caused irreversible damage to its ultrastructure, thus leading the cells to death; (2) With increase in the stress of Hg2+ and Cd2+, ultrastructural damage was related to the changes of plant physiology; (3) The toxic symptoms of plant showed an evident correlation between dose and effect; (4) The toxicity of Cd2+ on A. imbricata is heavier than that of Hg2+ under the same treatment time and concentration. The lethal concentration of Hg2+ to A. imbricata ranged from 3.5 to 4 mg/L, and that of Cd2+ ranged from 3 to 3.5 mg/L. The damage of cell ultrastructure on Anabaena azollae Strasburger was observed. The results indicated that tolerance of Azolla imbricata for Hg2+ and Cd2+ was higher than that of A. imbricata.