Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investi...Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investigate the breakup of cavitation bubbles within the diesel droplet, a new mathematical model describing the disturbance growth rate of the diesel bubble instability is developed. The new mathematical model is applied to predict the effects of fluids viscosity on the stability of cavitation bubbles. The predicted values reveal that the comprehensive effect of fluids viscosity makes cavitation bubbles more stable. Compared with the viscosities of air and cavitation bubble, the diesel droplet's viscosity plays a dominant role on the stability of cavitation bubbles. Furthermore, based on the modified bubble breakup criterion, the effects of bubble growth speed, sound speed, droplet viscosity, droplet density, and bubble-droplet radius ratio on the breakup time and the breakup radius of cavitation bubbles are studied respectively. It is found that a bubble with large bubble-droplet radius ratio has the initial condition for breaking easily. For a given bubble-droplet radius ratio (0.2), as the bubble growth speed increases (from 2 m/s to 60 m/s), the bubble breakup time decreases(from 3.59 gs to 0.17 ps) rapidly. Both the greater diesel droplet viscosity and the greater diesel droplet density result in the increase of the breakup time. With increasing initial bubble-droplet radius ratio (from 0.2 to 0.8), the bubble breakup radius decreases (from 8.86 trn to 6.23 tm). There is a limited breakup radius for a bubble with a certain initial bubble-droplet radius ratio. The mathematical model and the modified bubble breakup criterion are helpful to improve the study on the breakup mechanism of the secondary diesel droplet under the condition of supercavitation.展开更多
PLGA/CS nanoparticles containing fluorescein sodium as drug model were synthesized and characterized to investigate the feasibility of laser-induced drug delivery using pulse 532 nm. The main objective was to investig...PLGA/CS nanoparticles containing fluorescein sodium as drug model were synthesized and characterized to investigate the feasibility of laser-induced drug delivery using pulse 532 nm. The main objective was to investigate the photothermally-induced mechanical force for transporting the nanoparticles. An argon laser was used to excite the fluorescence of the samples after irradiation. The preliminary results indicated that the drug nanoparticles encapsulated trapped by the cavitation bubbles can be transported by photothermomechanical effect. Different regions of interactions are defined and while in our case, the thermoelastic does not apply due to higher fluences, vaporization and laser-induced thermal breakdown (LITB) including the plasma formation and shock waves played an important and major role. Threshold fluences of 2.8, 18 and 102 Jcm-2 corresponding to 0.28, 1.8 and 10 GWcm-2 and 3.8, 30, and 171 MPa are determined for ablation, vaporization and LITB mechanisms respectively. The secondary microbubbles due to explosion of the primary transient cavitation bubbles played a key role in delivery process. Despite the dominant argon laser brightness, the laser-induced fluorescence spectroscopy (LIFS) demonstrated the fluorescence emission of the cavitation bubbles carrying due to the drug nanoparticles entrapped within the biogelatin after exposure to laser radiation, the irradiation, which confirms the possibility of transport of drug nanoparticles by laser cavitation. Finally, it is suggested that the nature of such photothermal and photo non-thermal mechanical effects is governed and influenced by determining and criticizing in terms of the type of nanomaterial as well as their synthesis process engineering and fabrication as they can be made case sensitive by selecting different types of materials for a specific application.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51276011)Beijing Municipal Natural Science Foundation of China(Grant No.3132016)+1 种基金National Hi-tech Research and Development Program of China(863 Program,Grant No.2013AA065303)Opening Foundation of State Key Laboratory of Engines of China(Grant No.K2013-3)
文摘Supercavitation in the diesel nozzle increases the instability of droplets in part due to the two-phase mixture, while the effect of cavitation bubbles on the instability of drops is still unclear. In order to investigate the breakup of cavitation bubbles within the diesel droplet, a new mathematical model describing the disturbance growth rate of the diesel bubble instability is developed. The new mathematical model is applied to predict the effects of fluids viscosity on the stability of cavitation bubbles. The predicted values reveal that the comprehensive effect of fluids viscosity makes cavitation bubbles more stable. Compared with the viscosities of air and cavitation bubble, the diesel droplet's viscosity plays a dominant role on the stability of cavitation bubbles. Furthermore, based on the modified bubble breakup criterion, the effects of bubble growth speed, sound speed, droplet viscosity, droplet density, and bubble-droplet radius ratio on the breakup time and the breakup radius of cavitation bubbles are studied respectively. It is found that a bubble with large bubble-droplet radius ratio has the initial condition for breaking easily. For a given bubble-droplet radius ratio (0.2), as the bubble growth speed increases (from 2 m/s to 60 m/s), the bubble breakup time decreases(from 3.59 gs to 0.17 ps) rapidly. Both the greater diesel droplet viscosity and the greater diesel droplet density result in the increase of the breakup time. With increasing initial bubble-droplet radius ratio (from 0.2 to 0.8), the bubble breakup radius decreases (from 8.86 trn to 6.23 tm). There is a limited breakup radius for a bubble with a certain initial bubble-droplet radius ratio. The mathematical model and the modified bubble breakup criterion are helpful to improve the study on the breakup mechanism of the secondary diesel droplet under the condition of supercavitation.
文摘PLGA/CS nanoparticles containing fluorescein sodium as drug model were synthesized and characterized to investigate the feasibility of laser-induced drug delivery using pulse 532 nm. The main objective was to investigate the photothermally-induced mechanical force for transporting the nanoparticles. An argon laser was used to excite the fluorescence of the samples after irradiation. The preliminary results indicated that the drug nanoparticles encapsulated trapped by the cavitation bubbles can be transported by photothermomechanical effect. Different regions of interactions are defined and while in our case, the thermoelastic does not apply due to higher fluences, vaporization and laser-induced thermal breakdown (LITB) including the plasma formation and shock waves played an important and major role. Threshold fluences of 2.8, 18 and 102 Jcm-2 corresponding to 0.28, 1.8 and 10 GWcm-2 and 3.8, 30, and 171 MPa are determined for ablation, vaporization and LITB mechanisms respectively. The secondary microbubbles due to explosion of the primary transient cavitation bubbles played a key role in delivery process. Despite the dominant argon laser brightness, the laser-induced fluorescence spectroscopy (LIFS) demonstrated the fluorescence emission of the cavitation bubbles carrying due to the drug nanoparticles entrapped within the biogelatin after exposure to laser radiation, the irradiation, which confirms the possibility of transport of drug nanoparticles by laser cavitation. Finally, it is suggested that the nature of such photothermal and photo non-thermal mechanical effects is governed and influenced by determining and criticizing in terms of the type of nanomaterial as well as their synthesis process engineering and fabrication as they can be made case sensitive by selecting different types of materials for a specific application.