In this paper we study solvability of the Cauchy problem of the Kawahara equation 偏导dtu + au偏导dzu + β偏导d^3xu +γ偏导d^5xu = 0 with L^2 initial data. By working on the Bourgain space X^r,s(R^2) associated w...In this paper we study solvability of the Cauchy problem of the Kawahara equation 偏导dtu + au偏导dzu + β偏导d^3xu +γ偏导d^5xu = 0 with L^2 initial data. By working on the Bourgain space X^r,s(R^2) associated with this equation, we prove that the Cauchy problem of the Kawahara equation is locally solvable if initial data belong to H^r(R) and -1 〈 r ≤ 0. This result combined with the energy conservation law of the Kawahara equation yields that global solutions exist if initial data belong to L^2(R).展开更多
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtaine...This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.展开更多
This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Ca...This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Cauchy matrix to provideτfunctions for the investigated equations.In this paper,using the Cauchy matrix approach,we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions.These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem.Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction.These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.展开更多
This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x...This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.展开更多
In this paper we study the Cauchy problem for a class of semi-linear parabolic type equations with weak data in the homogeneous spaces. We give a method which can be used to construct local mild solutions of the abstr...In this paper we study the Cauchy problem for a class of semi-linear parabolic type equations with weak data in the homogeneous spaces. We give a method which can be used to construct local mild solutions of the abstract Cauchy problem in? σ,s,p andL q([0, T);H s,p) by introducing the concept of both admissible quintuplet and compatible space and establishing time-space estimates for solutions to the linear parabolic type equations. For the small data, we prove that these results can be extended globally in time. We also study the regularity of the solution to the abstract Cauchy problem for nonlinear parabolic type equations in ?σ,s,p. As an application, we obtain the same result for Navier-Stokes equations with weak initial data in homogeneous Sobolev spaces.展开更多
We consider the existence, both locally and globally in time, as well as the asymptotic behavior of solutions for the Cauchy problem of the sixth-order Boussinesq equation with damping term. Under rather mild conditio...We consider the existence, both locally and globally in time, as well as the asymptotic behavior of solutions for the Cauchy problem of the sixth-order Boussinesq equation with damping term. Under rather mild conditions on the nonlinear term and initial data, we prove that the above-mentioned problem admits a unique local solution, which can be continued to a global solution, and the problem is globally well-posed.Finally, under certain conditions, we prove that the global solution decays exponentially to zero in the infinite time limit.展开更多
基金Project supported by the China National Natural Science Foundation (Grants 10171111, 10171112)
文摘In this paper we study solvability of the Cauchy problem of the Kawahara equation 偏导dtu + au偏导dzu + β偏导d^3xu +γ偏导d^5xu = 0 with L^2 initial data. By working on the Bourgain space X^r,s(R^2) associated with this equation, we prove that the Cauchy problem of the Kawahara equation is locally solvable if initial data belong to H^r(R) and -1 〈 r ≤ 0. This result combined with the energy conservation law of the Kawahara equation yields that global solutions exist if initial data belong to L^2(R).
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
文摘This paper studied the invariance of the Cauchy mean with respect to the arithmetic mean when the denominator functions satisfy certain conditions. The partial derivatives of Cauchy’s mean on the diagonal are obtained by using the method of Wronskian determinant in the process of solving. Then the invariant equation is solved by using the obtained partial derivatives. Finally, the solutions of invariant equations when the denominator functions satisfy the same simple harmonic oscillator equation or the denominator functions are power functions that have been obtained.
基金supported by the National Natural Science Foundation of China(No.12271334).
文摘This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Cauchy matrix to provideτfunctions for the investigated equations.In this paper,using the Cauchy matrix approach,we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions.These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem.Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction.These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.
基金supported by the NSF of China(10571079,10671085)and the program of NCET
文摘This paper is concerned with the Cauchy problem for the modified Helmholtz equation in an infinite strip domain 0<x≤1,y∈R.The Cauchy data at x = 0 is given and the solution is then sought for the interval 0<x≤1.This problem is highly ill-posed and the solution(if it exists) does not depend continuously on the given data. In this paper,we propose a fourth-order modified method to solve the Cauchy problem. Convergence estimates are presented under the suitable choices of regularization parameters and the a priori assumption on the bounds of the exact solution.Numerical implementation is considered and the numerical examples show that our proposed method is effective and stable.
基金This work was supported by the National Natural Science Foundation of China(Grant No.19971001)the Special Funds for Major State Basic Research Projects of China.
文摘In this paper we study the Cauchy problem for a class of semi-linear parabolic type equations with weak data in the homogeneous spaces. We give a method which can be used to construct local mild solutions of the abstract Cauchy problem in? σ,s,p andL q([0, T);H s,p) by introducing the concept of both admissible quintuplet and compatible space and establishing time-space estimates for solutions to the linear parabolic type equations. For the small data, we prove that these results can be extended globally in time. We also study the regularity of the solution to the abstract Cauchy problem for nonlinear parabolic type equations in ?σ,s,p. As an application, we obtain the same result for Navier-Stokes equations with weak initial data in homogeneous Sobolev spaces.
文摘We consider the existence, both locally and globally in time, as well as the asymptotic behavior of solutions for the Cauchy problem of the sixth-order Boussinesq equation with damping term. Under rather mild conditions on the nonlinear term and initial data, we prove that the above-mentioned problem admits a unique local solution, which can be continued to a global solution, and the problem is globally well-posed.Finally, under certain conditions, we prove that the global solution decays exponentially to zero in the infinite time limit.
基金Supported by NSFC(10171014)Doctoral Programme Foundation of Institution of Higher Education and the Foundational of Fujian Educational Committee(JA02166)