A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte mod...A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte model, and the Fourier model are obtained with finite Fourier and Laplace transforms. The effects of the fractional order parameter and the relaxation time on the temperature fields in the finite slab are investigated.The results show that the larger the fractional order parameter, the slower the thermal wave. Moreover, the higher the relaxation time, the slower the heat flux propagates. By comparing the fractional order Cattaneo model with the classical Cattaneo-Vernotte and Fourier models, it can be found that the heat flux predicted using the fractional Cattaneo model always transports from the high temperature to the low one, which is in accord with the second law of thermodynamics. However, the classical Cattaneo-Vernotte model shows that the unphysical heat flux sometimes transports from the low temperature to the high one.展开更多
A numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and d...A numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and destructive/generative chemical reactions are considered. Use of proper variables leads to a system of non-linear dimensionless expressions. Velocity, temperature and concentration profiles are achieved through a finite difference based algorithm with a successive over-relaxation(SOR) method. Emerging dimensionless quantities are described with graphs and tables. The temperature and concentration profiles decay due to enhancement in fluid parameters and Deborah numbers.展开更多
基金supported by the National Natural Science Foundation of China(No.11372281)the Science and Technology Plan Project of Zhoushan(No.2016C41009)the Innovative Team Project of Zhejiang Ocean University
文摘A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte model, and the Fourier model are obtained with finite Fourier and Laplace transforms. The effects of the fractional order parameter and the relaxation time on the temperature fields in the finite slab are investigated.The results show that the larger the fractional order parameter, the slower the thermal wave. Moreover, the higher the relaxation time, the slower the heat flux propagates. By comparing the fractional order Cattaneo model with the classical Cattaneo-Vernotte and Fourier models, it can be found that the heat flux predicted using the fractional Cattaneo model always transports from the high temperature to the low one, which is in accord with the second law of thermodynamics. However, the classical Cattaneo-Vernotte model shows that the unphysical heat flux sometimes transports from the low temperature to the high one.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11802242)the Fundamental Research Funds for the Central Universities(Grant No.D5000230066).
文摘A numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and destructive/generative chemical reactions are considered. Use of proper variables leads to a system of non-linear dimensionless expressions. Velocity, temperature and concentration profiles are achieved through a finite difference based algorithm with a successive over-relaxation(SOR) method. Emerging dimensionless quantities are described with graphs and tables. The temperature and concentration profiles decay due to enhancement in fluid parameters and Deborah numbers.