期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
短脉冲激光加热分数阶导热及其热应力研究 被引量:6
1
作者 许光映 王晋宝 薛大文 《力学学报》 EI CSCD 北大核心 2020年第2期491-502,共12页
短脉冲激光加热引起材料内部复杂的传热过程及热变形,现有的以Fourier定律或Cattaneo-Vernotte松弛方程结合弹性理论为框架建立起来热应力理论在刻画其热物理过程存在严重缺陷.本文基于分数阶微积分理论,以半空间为研究对象,建立了分数... 短脉冲激光加热引起材料内部复杂的传热过程及热变形,现有的以Fourier定律或Cattaneo-Vernotte松弛方程结合弹性理论为框架建立起来热应力理论在刻画其热物理过程存在严重缺陷.本文基于分数阶微积分理论,以半空间为研究对象,建立了分数阶Cattaneo热传导方程和相应的热应力方程,给出了问题的初始条件和边界条件,采用拉普拉斯变换方法,给出了非高斯时间分布激光热源辐射下温度场和热应力场的解析解,研究了短脉冲激光加热的温度场及热应力场的热物理行为.数值计算中,首先对理论解进行数值验证,然后取分数阶变量p=0.5研究温度场和热应力场的变化特点及激光参数对温度和热应力的影响,最后数值计算分数阶参数对温度和热应力场的影响.计算结果表明,分数阶Cattaneo传热方程和热应力方程描述的温度和热应力任然具有波动特性,与经典的Fourier传热模型和标准的Cattaneo传热模型相比,分数阶阶次越大,热波波速越小,热波波动性越明显;反之,则热波波速越大,热扩散性越强.激光加热和冷却的速度越快,温度上升和下降的速度越快,压应力和拉应力交替变化越快,温度变化幅值越小,热应力幅值影响不明显. 展开更多
关键词 分数阶微积分 非傅里叶导热 cattaneo模型 热波动 热应力
下载PDF
Cattaneo模型的紧致有限差分法 被引量:2
2
作者 黄雅婷 尹哲 《山东师范大学学报(自然科学版)》 CAS 2019年第1期39-42,共4页
紧致差分格式是一种高精度的有限差分方法.本文给出了Cattaneo模型的四阶紧致差分格式,通过对具体算例进行数值模拟,和二阶差分格式比较,验证了紧致差分方法的精确性和有效性.
关键词 cattaneo模型 紧致差分方法 截断误差
下载PDF
Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux 被引量:1
3
作者 Guangying XU Jinbao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第10期1465-1476,共12页
A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte mod... A fractional Cattaneo model is derived for studying the heat transfer in a finite slab irradiated by a short pulse laser. The analytical solutions for the fractional Cattaneo model, the classical Cattaneo-Vernotte model, and the Fourier model are obtained with finite Fourier and Laplace transforms. The effects of the fractional order parameter and the relaxation time on the temperature fields in the finite slab are investigated.The results show that the larger the fractional order parameter, the slower the thermal wave. Moreover, the higher the relaxation time, the slower the heat flux propagates. By comparing the fractional order Cattaneo model with the classical Cattaneo-Vernotte and Fourier models, it can be found that the heat flux predicted using the fractional Cattaneo model always transports from the high temperature to the low one, which is in accord with the second law of thermodynamics. However, the classical Cattaneo-Vernotte model shows that the unphysical heat flux sometimes transports from the low temperature to the high one. 展开更多
关键词 fractional cattaneo model cattaneo-Vernotte model fractional derivative finite slab
下载PDF
基于反常热传导的分数阶热弹耦合理论
4
作者 尉亚军 吴华 邓子辰 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第5期141-149,共9页
原子模拟和实验研究表明低维纳米材料具有反常热传导特性,建立唯象反常热弹耦合模型,研究强热传导导致的热力耦合响应,对微纳器件的安全稳定运行至关重要.本文旨在从反常热传导的视角重新审视分数阶热弹耦合模型。反常热传导由第二声效... 原子模拟和实验研究表明低维纳米材料具有反常热传导特性,建立唯象反常热弹耦合模型,研究强热传导导致的热力耦合响应,对微纳器件的安全稳定运行至关重要.本文旨在从反常热传导的视角重新审视分数阶热弹耦合模型。反常热传导由第二声效应引起,考虑波动热传导理论,建立了波动热传导与粘弹性理论的类比,阐明了Cattaneo-Vernotte模型和Green-Naghdi模型的关联.通过引入分数阶导数,构建了基于Cattaneo-Vernotte和Green-Naghdi理论的分数阶热弹耦合模型。数值结果表明:对分数阶次区间[O,1],分数阶Cattaneo-Vernotte(FCV)I模型和分数阶Green-Naghdi(FGN)I-III模型都能预测反常热弹耦合响应:比经典热弹性理论更高的温度和应力;温度和应力随时间的变化显示:FGNII模型在所有时间范围内都能得到反常响应.对Green-Naghdi模型及其分数阶模型的进一步系统研究,有助于揭示反常热传导和热弹耦合机理,并促进纳米材料的广泛应用. 展开更多
关键词 粘弹性理论 分数阶导数 热弹耦合 热弹性理论 热传导 低维纳米材料 分数阶模型 微纳器件
原文传递
Numerical simulation of chemically reactive Powell-Eyring liquid flow with double diffusive Cattaneo-Christov heat and mass flux theories 被引量:2
5
作者 A.RAUF Z.ABBAS +2 位作者 S.A.SHEHZAD A.ALSAEDI T.HAYAT 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第4期467-476,共10页
A numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and d... A numerical study is reported for two-dimensional flow of an incompressible Powell-Eyring fluid by stretching the surface with the Cattaneo-Christov model of heat diffusion. Impacts of heat generation/absorption and destructive/generative chemical reactions are considered. Use of proper variables leads to a system of non-linear dimensionless expressions. Velocity, temperature and concentration profiles are achieved through a finite difference based algorithm with a successive over-relaxation(SOR) method. Emerging dimensionless quantities are described with graphs and tables. The temperature and concentration profiles decay due to enhancement in fluid parameters and Deborah numbers. 展开更多
关键词 Powell-Eyring fluid cattaneo-Christov model chemical reaction finite difference
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部