Electro-spinning is a very modern process which can be used in various purposes. We did this experimental work at Swerea IVF in Sweden during M. Sc in Textile Technology programme at University of Bor?s. We should esp...Electro-spinning is a very modern process which can be used in various purposes. We did this experimental work at Swerea IVF in Sweden during M. Sc in Textile Technology programme at University of Bor?s. We should especially thank our supervisor—Anna Thorvaldsson and course teacher—Ioannis S. Chronakis. In this report, we have tried to explain the basic manufacturing techniques of the electrospun nanofiber by the electro-spinning, how one can characterize it by SEM (Scanning Electron Microscopy) and its various applications in the practical field, e.g wound healing, Tissue Engineering Scaffold. The experimental work helped us a lot to gather sufficient knowledge about the electro-spinning process which we wanted to share with all.展开更多
For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure ...For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the micro- structure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified car- tilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 gm and 34.1 lam respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.展开更多
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters call...Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.展开更多
Microdamage accumulation and adaptation of subchondral bone subjected to intensive cyclic loading are important processes associated with catastrophic bone failure,and joint degeneration in athletic humans and racehor...Microdamage accumulation and adaptation of subchondral bone subjected to intensive cyclic loading are important processes associated with catastrophic bone failure,and joint degeneration in athletic humans and racehorses.At the tissue-level,they lead to a spatial variation in bone tissue mineral density(TMD)which affects the response of the bone to mechanical load.Quantifying the spatial distribution of mechanical load within the subchondral bone is critical for understanding the mechanism of the joint failure.Previously,a gradient of TMD and mechanical properties has been reported under unconfined compression in osteochondral plugs.In the present study,we used micro computed tomography(μCT)-based finite element(FE)models of cartilage-bone to investigate the gradient of strain in the subchondral bone(SCB)from the third metacarpal(MC3)condyle of racehorses under simulated in situ compression.Non-destructive mechanical testing of specimens under high-rate compression provided the apparent-level modulus of SCB.FE models were analysed using unconfined and confined boundary conditions.Unconfined FE-predicted apparent-level gradient of modulus across the SCB thickness correlated well with the experimental results(R^(2)=0.72,p<0.05).The highest strain occurred in the most superficial SCB(0.5–2.5 mm deep to the cartilage-bone interface)under the simulated in-situ compression through articular cartilage.The findings of this study provide an estimation for the spatial distribution of mechanical strain within SCB in-situ in the presence of heterogeneous bone tissue which is commonly observed in joints subjected to intensive cyclic loading.展开更多
文摘Electro-spinning is a very modern process which can be used in various purposes. We did this experimental work at Swerea IVF in Sweden during M. Sc in Textile Technology programme at University of Bor?s. We should especially thank our supervisor—Anna Thorvaldsson and course teacher—Ioannis S. Chronakis. In this report, we have tried to explain the basic manufacturing techniques of the electrospun nanofiber by the electro-spinning, how one can characterize it by SEM (Scanning Electron Microscopy) and its various applications in the practical field, e.g wound healing, Tissue Engineering Scaffold. The experimental work helped us a lot to gather sufficient knowledge about the electro-spinning process which we wanted to share with all.
基金This paper was supported by the National Natural Science Foundation of China (Grant No: 50875201) and the National Hi-Tech Program of China (Grant No: 2009AA043801). The authors thank Professor Yiping Tang from Xi'an Jiaotong University for improving the manuscript.
文摘For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the micro- structure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified car- tilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 gm and 34.1 lam respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.
基金the Coordination for the Improvement of Higher Education Personnel(CAPES),No.88882.366181/2019-01the Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro(FAPERJ),No.E-26/202.682/2018National Council for Scientific and Technological Development(CNPq),No.467513/2014-7
文摘Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
基金funded by Racing Victoria Limited and the Victorian Racing Industry Fund of the Victorian State Government and The University of Melbourne.
文摘Microdamage accumulation and adaptation of subchondral bone subjected to intensive cyclic loading are important processes associated with catastrophic bone failure,and joint degeneration in athletic humans and racehorses.At the tissue-level,they lead to a spatial variation in bone tissue mineral density(TMD)which affects the response of the bone to mechanical load.Quantifying the spatial distribution of mechanical load within the subchondral bone is critical for understanding the mechanism of the joint failure.Previously,a gradient of TMD and mechanical properties has been reported under unconfined compression in osteochondral plugs.In the present study,we used micro computed tomography(μCT)-based finite element(FE)models of cartilage-bone to investigate the gradient of strain in the subchondral bone(SCB)from the third metacarpal(MC3)condyle of racehorses under simulated in situ compression.Non-destructive mechanical testing of specimens under high-rate compression provided the apparent-level modulus of SCB.FE models were analysed using unconfined and confined boundary conditions.Unconfined FE-predicted apparent-level gradient of modulus across the SCB thickness correlated well with the experimental results(R^(2)=0.72,p<0.05).The highest strain occurred in the most superficial SCB(0.5–2.5 mm deep to the cartilage-bone interface)under the simulated in-situ compression through articular cartilage.The findings of this study provide an estimation for the spatial distribution of mechanical strain within SCB in-situ in the presence of heterogeneous bone tissue which is commonly observed in joints subjected to intensive cyclic loading.
基金国家自然科学基金资助项目(81071458)国家高技术研究发展计划(863)资助项目(2012AA020502)+1 种基金National Natural Science Foundation of China(81071458)National High Technology Research and Development Program of China(2012AA020502)