Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train wa...Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.展开更多
文摘万向轴是高速列车传动系统的核心部件,其动不平衡检测对保障列车运行安全具有重要意义。万向轴动不平衡特征主要体现在特征频率中,针对该信号的故障特征频率提取,引入经验小波变换(empirical wavelet transform,EWT)与奇异值分解(singular value decomposition,SVD)算法。该算法利用EWT构造一组小波滤波器组提取信号的固有模态分量,并通过Hilbert变换得到每个单分量信号的瞬时频率与瞬时幅值,使用SVD结合奇异熵增量谱确定重构阶数并对每个单信号进行重构消噪。通过构造一仿真信号对算法的有效性与可行性进行验证,并将该方法运用于万向轴动不平衡检测中,结果表明:该方法能准确地提取信号的特征频率,使得谱线分辨力得到提高,可有效地应用于万向轴动不平衡检测中。
基金Projects(61134002,51305358)supported by the National Natural Science Foundation of ChinaProject(PIL1303)supported by the Open Project of State Key Laboratory of Precision Measurement Technology and Instruments,ChinaProject(2682014BR032)supported by the Fundamental Research Funds for the Central Universities,China
文摘Contrary to the aliasing defect between the adjacent intrinsic model functions(IMFs) existing in empirical model decomposition(EMD), a new method of detecting dynamic unbalance with cardan shaft in high-speed train was proposed by applying the combination between EMD, Hankel matrix, singular value decomposition(SVD) and normalized Hilbert transform(NHT). The vibration signals of gimbal installed base were decomposed through EMD to get different IMFs. The Hankel matrix constructed through the single IMF was orthogonally executed through SVD. The critical singular values were selected to reconstruct vibration signs on the basis of the key stack of singular values. Instantaneous frequencys(IFs) of reconstructed vibration signs were applied to detect dynamic unbalance with shaft and eliminated clutter spectrum caused by the aliasing defect between the adjacent IMFs, which highlighted the failure characteristics. The method was verified by test data in the unbalance condition of dynamic cardan shaft. The results show that the method effectively detects the fault vibration characteristics caused by cardan shaft dynamic unbalance and extracts the nature vibration features. With comparison to the traditional EMD-NHT, clarity and failure characterization force are significantly improved.