The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behav...The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m∙K for BTD composites and from 0.52 to 0.21 W/m∙K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.展开更多
文摘The purpose of this paper is to make a contribution to the use of diatomite as a mineral additive in the composition of compressed earth blocks. The aim is to study the influence of diatomite on the hygrothermal behaviour of composites based on clay soils. For this reason, two clay soils with different physicochemical and mineralogical compositions were incorporated with diatomite at percentages ranging from 5% to 50% with a step of 5 to produce compressed earth blocks. After assessing the hydric and thermal characteristics of the composites, it was found that the incorporation of diatomite into the clay matrix favours the absorption of water by capillary action for all the composites. The diatomite-amended blocks subjected to the rain erosion test were less eroded than the unamended blocks. In addition, BYD composites were found to be more resistant than BTD composites, due to the high percentage of clay in T soil. The thermal conductivity of the latter decreases respectively from 0.72 to 0.29 W/m∙K for BTD composites and from 0.52 to 0.21 W/m∙K for BYD composites. This reduction proves the thermal insulating properties of diatomite. Despite the high capillary absorption capacity of these composites, they have good thermal properties, enabling them to be used in the construction of buildings for improved indoor thermal comfort.