为明确110 k V电容器组地震响应规律,提高特高压变电站的地震安全性,首次对特高压变电站内110 k V电容器组模型进行地震模拟振动台试验研究。通过振动台试验的方式,测定电容器组模型的动力特性及地震作用下关键部位的加速度、位移、应...为明确110 k V电容器组地震响应规律,提高特高压变电站的地震安全性,首次对特高压变电站内110 k V电容器组模型进行地震模拟振动台试验研究。通过振动台试验的方式,测定电容器组模型的动力特性及地震作用下关键部位的加速度、位移、应变等参数。试验结果显示,试件两水平向1阶频率分别为2.69 Hz、3.39 Hz,处于地震动卓越频率段;试件结构对地震加速度有放大作用,且放大作用与高度呈非线性关系;在目标峰值加速度为0.2g(g=9.8 m/s2)的地震波作用下,试件最大应变出现在底部绝缘子根部,计算得到最大应力为25.10 MPa,低于绝缘子破坏应力。该研究明确110 k V电容器组具有较高地震易损性,抗震关键部位为底部支柱绝缘子,为该类设备的抗震性能研究提供了数据支撑。展开更多
文摘为明确110 k V电容器组地震响应规律,提高特高压变电站的地震安全性,首次对特高压变电站内110 k V电容器组模型进行地震模拟振动台试验研究。通过振动台试验的方式,测定电容器组模型的动力特性及地震作用下关键部位的加速度、位移、应变等参数。试验结果显示,试件两水平向1阶频率分别为2.69 Hz、3.39 Hz,处于地震动卓越频率段;试件结构对地震加速度有放大作用,且放大作用与高度呈非线性关系;在目标峰值加速度为0.2g(g=9.8 m/s2)的地震波作用下,试件最大应变出现在底部绝缘子根部,计算得到最大应力为25.10 MPa,低于绝缘子破坏应力。该研究明确110 k V电容器组具有较高地震易损性,抗震关键部位为底部支柱绝缘子,为该类设备的抗震性能研究提供了数据支撑。