In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube(CNT) composite are reported. On thin rubber substrates, CNTs are deposited from sus...In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube(CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N^(-1) and 1.8 N^(-1), respectively. Experimental results are compared with the simulated values,and they show that they are in reasonable agreement with each other.展开更多
In this paper, we focus on antenna array design for mobile phone with finite volume and propose a novel antenna element structure by capacitive feeding and capacitive loading method based on the planar inverted F ante...In this paper, we focus on antenna array design for mobile phone with finite volume and propose a novel antenna element structure by capacitive feeding and capacitive loading method based on the planar inverted F antenna (PIFA). State-of-the-art development on this issue is reviewed. Then, a novel capacitively fed and capacitively loaded PIFA structure is proposed and studied. The results of the experiments showed that our structure can reduce the coupling of antenna elements from - 13.4 dB to -24.5 dB. Finally, a design with a bandwidth of 100 MHz centered at 2.35 GHz and envelopment correlation coefficient of 0.01 2 is provided and the diversity performance of the dual-element modified PIFA array is evaluated in both simulation and measurement. In a word, our novel design reaches broadband, miniaturization, high isolation and offers excellent diversity performance.展开更多
基金Project Supported by Natural Science Foundation of China(50977062、51207106、51307120)Development fund Program of Science&Technology of Tianjin Higher University(20110411)
基金Ghulam Ishaq Khan Institute of Engineering Science and Technology, Pakistan for its support
文摘In this paper, the fabrication and investigation of flexible impedance and capacitive tensile load sensors based on carbon nanotube(CNT) composite are reported. On thin rubber substrates, CNTs are deposited from suspension in water and pressed at elevated temperature. It is found that the fabricated load cells are highly sensitive to the applied mechanical force with good repeatability. The increase in impedance of the cells is observed to be 2.0 times while the decrease in the capacitance is found to be 2.1 times as applied force increases up to 0.3 N. The average impedance and capacitive sensitivity of the cell are equal to 3.4 N^(-1) and 1.8 N^(-1), respectively. Experimental results are compared with the simulated values,and they show that they are in reasonable agreement with each other.
基金supported by the Chongqing Information Technology Designing CO. LTD.the Chongqing Municipal Science & Technology Development Program (CSTC, 2010AC2143)
文摘In this paper, we focus on antenna array design for mobile phone with finite volume and propose a novel antenna element structure by capacitive feeding and capacitive loading method based on the planar inverted F antenna (PIFA). State-of-the-art development on this issue is reviewed. Then, a novel capacitively fed and capacitively loaded PIFA structure is proposed and studied. The results of the experiments showed that our structure can reduce the coupling of antenna elements from - 13.4 dB to -24.5 dB. Finally, a design with a bandwidth of 100 MHz centered at 2.35 GHz and envelopment correlation coefficient of 0.01 2 is provided and the diversity performance of the dual-element modified PIFA array is evaluated in both simulation and measurement. In a word, our novel design reaches broadband, miniaturization, high isolation and offers excellent diversity performance.