The main purpose of this note is to estimate the size of the set Tμλ of points, at which the Cantor function is not differentiable and we find that the Hausdorff dimension of Tμλ is [log2/log3]2. Moreover, the Pac...The main purpose of this note is to estimate the size of the set Tμλ of points, at which the Cantor function is not differentiable and we find that the Hausdorff dimension of Tμλ is [log2/log3]2. Moreover, the Packing dimension of Tμλ is log2/log3. The log2 = loge2 is that if ax = N (a >0, and a≠1), then the number x is called the logarithm of N with a base, recorded as x = logaN, read as the logarithm of N with a base, where a is called logarithm Base number, N is called true number.展开更多
There are many important concepts in linear algebra, such as linear correlation and linear independence, eigenvalues and eigenvectors, and so on. The article provides a graphical explanation of how to distinguish betw...There are many important concepts in linear algebra, such as linear correlation and linear independence, eigenvalues and eigenvectors, and so on. The article provides a graphical explanation of how to distinguish between the concepts of linear correlation and linear independence. The conclusion points out that linear independence means that there are no two (base) vectors with the same direction in a vector graph;otherwise, it is a linear correlation.展开更多
文摘The main purpose of this note is to estimate the size of the set Tμλ of points, at which the Cantor function is not differentiable and we find that the Hausdorff dimension of Tμλ is [log2/log3]2. Moreover, the Packing dimension of Tμλ is log2/log3. The log2 = loge2 is that if ax = N (a >0, and a≠1), then the number x is called the logarithm of N with a base, recorded as x = logaN, read as the logarithm of N with a base, where a is called logarithm Base number, N is called true number.
文摘There are many important concepts in linear algebra, such as linear correlation and linear independence, eigenvalues and eigenvectors, and so on. The article provides a graphical explanation of how to distinguish between the concepts of linear correlation and linear independence. The conclusion points out that linear independence means that there are no two (base) vectors with the same direction in a vector graph;otherwise, it is a linear correlation.