期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
嵌入典型时间序列特征的随机Shapelet森林算法
1
作者
高振卓
王志海
刘海洋
《计算机科学》
CSCD
北大核心
2022年第7期40-49,共10页
近年来,时间序列分类问题的研究受到了广泛关注。先进的时间序列分类方法通常建立在良好的特征表示的基础之上。Shapelet是时间序列中具备鉴别性的子序列,可有效表达时间序列的局部形状特征。然而,高昂的计算成本大大限制了基于Shapele...
近年来,时间序列分类问题的研究受到了广泛关注。先进的时间序列分类方法通常建立在良好的特征表示的基础之上。Shapelet是时间序列中具备鉴别性的子序列,可有效表达时间序列的局部形状特征。然而,高昂的计算成本大大限制了基于Shapelet的时间序列分类方法的实用性。除此之外,传统的Shapelet仅能描述欧氏距离度量下子序列的形状特征,因此极易受到噪声干扰并难以挖掘子序列中蕴含的其他类型的鉴别性信息。为应对上述问题,提出了一种新的时间序列分类算法——嵌入典型时间序列特征的随机Shapelet森林。该算法基于以下3个关键策略:1)随机选取Shapelet并限制Shapelet的作用范围以提高效率;2)在Shapelet中嵌入多个典型时间序列特征以提高算法对不同分类问题的适应性,并弥补随机选取Shapelet带来的精度损失;3)在新的特征表示的基础上构建随机森林分类器以确保算法的泛化能力。112个UCR时间序列数据集上的实验结果表明,本文算法的准确性超越了基于Shapelet精确搜索和Shapelet转换技术的STC算法,以及多个其他类型的先进时间序列分类算法。此外,广泛的实验对比验证了本文算法在效率上的显著优势。
展开更多
关键词
时间序列
分类
Shapelet
典型时间序列特征
随机森林
下载PDF
职称材料
题名
嵌入典型时间序列特征的随机Shapelet森林算法
1
作者
高振卓
王志海
刘海洋
机构
北京交通大学计算机与信息技术学院
交通数据分析与挖掘北京市重点实验室
出处
《计算机科学》
CSCD
北大核心
2022年第7期40-49,共10页
基金
国家自然科学基金(61771058)
北京市自然科学基金(4214067)。
文摘
近年来,时间序列分类问题的研究受到了广泛关注。先进的时间序列分类方法通常建立在良好的特征表示的基础之上。Shapelet是时间序列中具备鉴别性的子序列,可有效表达时间序列的局部形状特征。然而,高昂的计算成本大大限制了基于Shapelet的时间序列分类方法的实用性。除此之外,传统的Shapelet仅能描述欧氏距离度量下子序列的形状特征,因此极易受到噪声干扰并难以挖掘子序列中蕴含的其他类型的鉴别性信息。为应对上述问题,提出了一种新的时间序列分类算法——嵌入典型时间序列特征的随机Shapelet森林。该算法基于以下3个关键策略:1)随机选取Shapelet并限制Shapelet的作用范围以提高效率;2)在Shapelet中嵌入多个典型时间序列特征以提高算法对不同分类问题的适应性,并弥补随机选取Shapelet带来的精度损失;3)在新的特征表示的基础上构建随机森林分类器以确保算法的泛化能力。112个UCR时间序列数据集上的实验结果表明,本文算法的准确性超越了基于Shapelet精确搜索和Shapelet转换技术的STC算法,以及多个其他类型的先进时间序列分类算法。此外,广泛的实验对比验证了本文算法在效率上的显著优势。
关键词
时间序列
分类
Shapelet
典型时间序列特征
随机森林
Keywords
time
series
Classification
Shapelet
canonical
time
series
features
Random
forest
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
嵌入典型时间序列特征的随机Shapelet森林算法
高振卓
王志海
刘海洋
《计算机科学》
CSCD
北大核心
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部