The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographica...The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community.展开更多
Road visual navigation relies on accurate road models.This study was aimed at proposing an improved scale-invariant feature transform(SIFT)algorithm for recovering depth information from farmland road images,which wou...Road visual navigation relies on accurate road models.This study was aimed at proposing an improved scale-invariant feature transform(SIFT)algorithm for recovering depth information from farmland road images,which would provide a reliable path for visual navigation.The mean image of pixel value in five channels(R,G,B,S and V)were treated as the inspected image and the feature points of the inspected image were extracted by the Canny algorithm,for achieving precise location of the feature points and ensuring the uniformity and density of the feature points.The mean value of the pixels in 5×5 neighborhood around the feature point at an interval of 45ºin eight directions was then treated as the feature vector,and the differences of the feature vectors were calculated for preliminary matching of the left and right image feature points.In order to achieve the depth information of farmland road images,the energy method of feature points was used for eliminating the mismatched points.Experiments with a binocular stereo vision system were conducted and the results showed that the matching accuracy and time consuming for depth recovery when using the improved SIFT algorithm were 96.48%and 5.6 s,respectively,with the accuracy for depth recovery of-7.17%-2.97%in a certain sight distance.The mean uniformity,time consuming and matching accuracy for all the 60 images under various climates and road conditions were 50%-70%,5.0-6.5 s,and higher than 88%,respectively,indicating that performance for achieving the feature points(e.g.,uniformity,matching accuracy,and algorithm real-time)of the improved SIFT algorithm were superior to that of conventional SIFT algorithm.This study provides an important reference for navigation technology of agricultural equipment based on machine vision.展开更多
文摘The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community.
基金This work was financially supported by the Zhejiang Science and Technology Department Basic Public Welfare Research Project(LGN18F030001)the Major Project of Zhejiang Science and Technology Department(2016C02G2100540).
文摘Road visual navigation relies on accurate road models.This study was aimed at proposing an improved scale-invariant feature transform(SIFT)algorithm for recovering depth information from farmland road images,which would provide a reliable path for visual navigation.The mean image of pixel value in five channels(R,G,B,S and V)were treated as the inspected image and the feature points of the inspected image were extracted by the Canny algorithm,for achieving precise location of the feature points and ensuring the uniformity and density of the feature points.The mean value of the pixels in 5×5 neighborhood around the feature point at an interval of 45ºin eight directions was then treated as the feature vector,and the differences of the feature vectors were calculated for preliminary matching of the left and right image feature points.In order to achieve the depth information of farmland road images,the energy method of feature points was used for eliminating the mismatched points.Experiments with a binocular stereo vision system were conducted and the results showed that the matching accuracy and time consuming for depth recovery when using the improved SIFT algorithm were 96.48%and 5.6 s,respectively,with the accuracy for depth recovery of-7.17%-2.97%in a certain sight distance.The mean uniformity,time consuming and matching accuracy for all the 60 images under various climates and road conditions were 50%-70%,5.0-6.5 s,and higher than 88%,respectively,indicating that performance for achieving the feature points(e.g.,uniformity,matching accuracy,and algorithm real-time)of the improved SIFT algorithm were superior to that of conventional SIFT algorithm.This study provides an important reference for navigation technology of agricultural equipment based on machine vision.