In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations conve...In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.展开更多
In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations conve...In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.展开更多
基金Sponsored by the National Science Foundation of China (10471050, 10772046)Natural Science Foundation of Guangdong Province (7010407)
文摘In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.
基金Sponsored by the National Science Foundation of China (10471050, 10772046) Natural Science Foundation of Guangdong Province (7010407)
文摘In this article, the authors show the existence of global solution of two-dimensional viscous Camassa-Holm (Navier-Stokes-alpha) (NS-α) equations. The authors also prove that the solution of the NS-α equations converges to the solution of the 2D NS equations in the inviscid limit and give the convergence rate of the difference of the solution.