Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be s...Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. MANC was characterized using XRD, SEM, TEM, EDX and surface area (BET). Quantum design SQUID magnetometer was used to study the magnetic measurement. The present study was conducted to evaluate the feasibility of MANC for the removal of cadmium ions from aqueous solutions through batch adsorption technique. The effects of pH, adsorbent dose, temperature, contact time and initial Cd2+ concentration on cadmium ions adsorption were studied. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. The equilibrium data were best represented by the Langmuir isotherm. The kinetic data were fitted to pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models, and it was found to follow closely the pseudo-second-order model. Thermodynamic parameters were calculated for the Cd2+ ion-MANC system and the positive value of ΔH° showed that the adsorption was endothermic in nature. Furthermore, a single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained.展开更多
The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting mate...The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting material(i.e. 3-MPA@PMNPs) characterized by FTIR, powder XRD, SEM, TEM, EDX, VSM, BET and TGA techniques and then further employed for the investigation of the adsorptive removal of lead(Pb^2+) and cadmium(Cd^2+) ions from aqueous solutions in single and binary systems. The material showed fastest adsorptive rate(98.23%) for Pb^2+ and(96.5%) Cd2+within the contact time of 60 min at pH 6.5 in the single system. The experimental data were fitted well to Langmuir isotherm, indicated monolayer adsorption of both metal ions onto 3-MPA@PMNPs and an estimated comparable adsorptive capacity of 68.41 mg·g^-1(Pb2+) and 79.8 mg·g^-1(Cd2+) at p H 6.5. However, kinetic data agreed well with pseudo-second-order model, and indicated that the removal mainly supported chemisorption and/or ion-exchange mechanism. Thermodynamic parameters such asΔGo,ΔHo, and ΔSo, were-3259.20, 119.35 and 20.73 for Pb^2+, and-1491.10, 45.441 and 7.87 for Cd^2+ at temperature 298.15 K, confirmed that adsorption was endothermic, spontaneous and favorable. The material demonstrated higher selectivity of Pb2+ and its removal efficiency was(98.20 ± 0.3)% in binary system experiments. The material persisted performance up-to seven(07) consecutive treatment cycles without losing their stability and offered comparable fastest magnetic separation(35 s) from aqueous solutions. Therefore, it is recommended that the prepared material can be employed to remove toxic heavy metal ions from water/wastewaters and this "green" method can easily be implemented at large scale in low economy countries.展开更多
文摘Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. MANC was characterized using XRD, SEM, TEM, EDX and surface area (BET). Quantum design SQUID magnetometer was used to study the magnetic measurement. The present study was conducted to evaluate the feasibility of MANC for the removal of cadmium ions from aqueous solutions through batch adsorption technique. The effects of pH, adsorbent dose, temperature, contact time and initial Cd2+ concentration on cadmium ions adsorption were studied. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. The equilibrium data were best represented by the Langmuir isotherm. The kinetic data were fitted to pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models, and it was found to follow closely the pseudo-second-order model. Thermodynamic parameters were calculated for the Cd2+ ion-MANC system and the positive value of ΔH° showed that the adsorption was endothermic in nature. Furthermore, a single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained.
基金Supported by the State Key Laboratory of Environmental Criteria and Risk Assessment(No.SKLECRA 2013FP12)Shandong Province Key Research and Development Program(2016GSF115040)the financial support by the Chinese Scholarship Council,China(CSC No:2016GXYO20)
文摘The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting material(i.e. 3-MPA@PMNPs) characterized by FTIR, powder XRD, SEM, TEM, EDX, VSM, BET and TGA techniques and then further employed for the investigation of the adsorptive removal of lead(Pb^2+) and cadmium(Cd^2+) ions from aqueous solutions in single and binary systems. The material showed fastest adsorptive rate(98.23%) for Pb^2+ and(96.5%) Cd2+within the contact time of 60 min at pH 6.5 in the single system. The experimental data were fitted well to Langmuir isotherm, indicated monolayer adsorption of both metal ions onto 3-MPA@PMNPs and an estimated comparable adsorptive capacity of 68.41 mg·g^-1(Pb2+) and 79.8 mg·g^-1(Cd2+) at p H 6.5. However, kinetic data agreed well with pseudo-second-order model, and indicated that the removal mainly supported chemisorption and/or ion-exchange mechanism. Thermodynamic parameters such asΔGo,ΔHo, and ΔSo, were-3259.20, 119.35 and 20.73 for Pb^2+, and-1491.10, 45.441 and 7.87 for Cd^2+ at temperature 298.15 K, confirmed that adsorption was endothermic, spontaneous and favorable. The material demonstrated higher selectivity of Pb2+ and its removal efficiency was(98.20 ± 0.3)% in binary system experiments. The material persisted performance up-to seven(07) consecutive treatment cycles without losing their stability and offered comparable fastest magnetic separation(35 s) from aqueous solutions. Therefore, it is recommended that the prepared material can be employed to remove toxic heavy metal ions from water/wastewaters and this "green" method can easily be implemented at large scale in low economy countries.