The hot deformation behavior of as-cast AISI M2 high-speed steel containing mischmetal (RE) has been investigated on a Gleeble-3500 simulator in the temperature range of 1000--1 150 ℃ and strain rate range of 0.01-...The hot deformation behavior of as-cast AISI M2 high-speed steel containing mischmetal (RE) has been investigated on a Gleeble-3500 simulator in the temperature range of 1000--1 150 ℃ and strain rate range of 0.01- 10 s 1 at true strain of 1.0. The mechanical behavior has been characterized using stress-strain curve analysis, kinetic analysis, processing maps, etc. Metallographic investigation was performed to evaluate the mechanism of flow insta- bility. The results show that the deformation activation energy decreases with increasing deformation temperature; the efficiency of power dissipation increases with decreasing strain rate and increasing temperature; flow instability is observed at low-to-medium temperature and higher strain rate region when the strain is smaller, but extends to lower strain rate and high temperature regions with the increment of strain, in which it is manifested as flow localization near the grain boundary. Hot deformation equations and processing maps are obtained. The optimal processing window is suggested and the deformation mechanism is dynamic recrystallization (DRX).展开更多
用Y K Na对M2高速钢进行复合变质处理,研究了变质处理对M2高速钢组织和性能的影响。结果表明,M2铸造高速钢经Y K Na复合变质处理后,组织明显细化,共晶碳化物由网状分布变为块状和团球状,冲击韧性提高70 7%,耐磨性也明显提高,各项力学性...用Y K Na对M2高速钢进行复合变质处理,研究了变质处理对M2高速钢组织和性能的影响。结果表明,M2铸造高速钢经Y K Na复合变质处理后,组织明显细化,共晶碳化物由网状分布变为块状和团球状,冲击韧性提高70 7%,耐磨性也明显提高,各项力学性能接近锻造M2高速钢的水平。展开更多
基金Item Sponsored by National Natural Science Foundation of China(51101137,51171161)Science and Technology Research and Development Plan of Qinhuangdao of China(201101A100)
文摘The hot deformation behavior of as-cast AISI M2 high-speed steel containing mischmetal (RE) has been investigated on a Gleeble-3500 simulator in the temperature range of 1000--1 150 ℃ and strain rate range of 0.01- 10 s 1 at true strain of 1.0. The mechanical behavior has been characterized using stress-strain curve analysis, kinetic analysis, processing maps, etc. Metallographic investigation was performed to evaluate the mechanism of flow insta- bility. The results show that the deformation activation energy decreases with increasing deformation temperature; the efficiency of power dissipation increases with decreasing strain rate and increasing temperature; flow instability is observed at low-to-medium temperature and higher strain rate region when the strain is smaller, but extends to lower strain rate and high temperature regions with the increment of strain, in which it is manifested as flow localization near the grain boundary. Hot deformation equations and processing maps are obtained. The optimal processing window is suggested and the deformation mechanism is dynamic recrystallization (DRX).