Potassium (K+) is one of the essential macronutrients for plant growth and development. However, K+ content in soils is usually limited so that the crop yields are restricted. Plants may adapt to K+-deficient env...Potassium (K+) is one of the essential macronutrients for plant growth and development. However, K+ content in soils is usually limited so that the crop yields are restricted. Plants may adapt to K+-deficient environment by adjusting their physiological and morphological status, indicating that plants may have evolved their sensing and signaling mechanisms in response to K+-deficiency. This short review particularly discusses some components as possible sensors or signal transducers involved in plant sensing and signaling in response to K+-deficiency, such as K+ channels and transporters, H+-ATPase, some cytoplasmic enzymes, etc. Possible involvement of Ca2+ and ROS signals in plant responses to K+-deficiency is also discussed.展开更多
AIM: To investigate the effect of rhubarb on contractile response of isolated gallbladder muscle strips from guinea pigs and its mechanism.METHODS: Guinea pigs were killed to remove the whole gallbladder. Two or three...AIM: To investigate the effect of rhubarb on contractile response of isolated gallbladder muscle strips from guinea pigs and its mechanism.METHODS: Guinea pigs were killed to remove the whole gallbladder. Two or three smooth muscle strips (8 mm×3mm) were cut along the longitudinal direction. The mucosa on each strip was carefully removed. Each longitudinal muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution (37 ℃), bubbled continuously with 950 mL/L O2 and 50 mL/L CO2. The resting tension (g), mean contractile amplitude (mm),and contractile frequency (waves/min) were simultaneously recorded on recorders. After 2-h equilibration, rhubarb (10, 20, 70, 200, 700, 1 000 g/L) was added cumulatively to the tissue chamber in turns every 2 min to observe their effects on gallbladder.Antagonists were given 3 min before administration of rhubarb to investigate the possible mechanism.RESULTS: Rhubarb increased the resting tension (from 0 to 0.40±0.02, P<0.001), and decreased the mean contractile amplitude (from 5.22±0.71 to 2.73±0.41,P<0.001). It also increased the contractile frequency of the gallbladder muscle strips in guinea pigs (from 4.09±0.46to 6.08±0.35, P<0.001). The stimulation of rhubarb on the resting tension decreased from 3.98±0.22 to 1.58±0.12by atropine (P<0.001), from3.98±0.22 to 2.09±0.19 by verapamil (P<0.001) and from 3.98±0.22 to 2.67±0.43by phentolamine (P<0.005). But the effect was not inhibited by hexamethonium (P>0.05). In addition, the action of mean amplitude and frequency was not inhibited by the above antagonists.CONCLUSION: Rhubarb can stimulate the motility of isolated gallbladder muscle strips from guinea pigs. The stimulation of rhubarb might be relevant with M receptor,Ca2+ channel and α receptor partly.展开更多
基金This work was supported by the National Science Foundation of China (grant No. 30830013 to WoH.W.) and the Programme of Introducing Talents of Discipline to Universities (B06003 to W.H.W.). No conflict of interest declared.
文摘Potassium (K+) is one of the essential macronutrients for plant growth and development. However, K+ content in soils is usually limited so that the crop yields are restricted. Plants may adapt to K+-deficient environment by adjusting their physiological and morphological status, indicating that plants may have evolved their sensing and signaling mechanisms in response to K+-deficiency. This short review particularly discusses some components as possible sensors or signal transducers involved in plant sensing and signaling in response to K+-deficiency, such as K+ channels and transporters, H+-ATPase, some cytoplasmic enzymes, etc. Possible involvement of Ca2+ and ROS signals in plant responses to K+-deficiency is also discussed.
基金Supported by the Key Laboratory of Pre-clinical Research for Chinese HerbsNew Drugs of Gansu Province and The Natural Scientific Foundation of Gansu Province, No. zs021-A25-059-Y
文摘AIM: To investigate the effect of rhubarb on contractile response of isolated gallbladder muscle strips from guinea pigs and its mechanism.METHODS: Guinea pigs were killed to remove the whole gallbladder. Two or three smooth muscle strips (8 mm×3mm) were cut along the longitudinal direction. The mucosa on each strip was carefully removed. Each longitudinal muscle strip was suspended in a tissue chamber containing 5 mL Krebs solution (37 ℃), bubbled continuously with 950 mL/L O2 and 50 mL/L CO2. The resting tension (g), mean contractile amplitude (mm),and contractile frequency (waves/min) were simultaneously recorded on recorders. After 2-h equilibration, rhubarb (10, 20, 70, 200, 700, 1 000 g/L) was added cumulatively to the tissue chamber in turns every 2 min to observe their effects on gallbladder.Antagonists were given 3 min before administration of rhubarb to investigate the possible mechanism.RESULTS: Rhubarb increased the resting tension (from 0 to 0.40±0.02, P<0.001), and decreased the mean contractile amplitude (from 5.22±0.71 to 2.73±0.41,P<0.001). It also increased the contractile frequency of the gallbladder muscle strips in guinea pigs (from 4.09±0.46to 6.08±0.35, P<0.001). The stimulation of rhubarb on the resting tension decreased from 3.98±0.22 to 1.58±0.12by atropine (P<0.001), from3.98±0.22 to 2.09±0.19 by verapamil (P<0.001) and from 3.98±0.22 to 2.67±0.43by phentolamine (P<0.005). But the effect was not inhibited by hexamethonium (P>0.05). In addition, the action of mean amplitude and frequency was not inhibited by the above antagonists.CONCLUSION: Rhubarb can stimulate the motility of isolated gallbladder muscle strips from guinea pigs. The stimulation of rhubarb might be relevant with M receptor,Ca2+ channel and α receptor partly.