Let K2 be the Milnor functor and let Фn (x)∈ Q[X] be the n-th cyclotomic polynomial. Let Gn(Q) denote a subset consisting of elements of the form {a, Фn(a)}, where a ∈ Q^* and {, } denotes the Steinberg sym...Let K2 be the Milnor functor and let Фn (x)∈ Q[X] be the n-th cyclotomic polynomial. Let Gn(Q) denote a subset consisting of elements of the form {a, Фn(a)}, where a ∈ Q^* and {, } denotes the Steinberg symbol in K2Q. J. Browkin proved that Gn(Q) is a subgroup of K2Q if n = 1,2, 3, 4 or 6 and conjectured that Gn(Q) is not a group for any other values of n. This conjecture was confirmed for n =2^T 3S or n = p^r, where p ≥ 5 is a prime number such that h(Q(ζp)) is not divisible by p. In this paper we confirm the conjecture for some n, where n is not of the above forms, more precisely, for n = 15, 21,33, 35, 60 or 105.展开更多
Let q be a power of a prime, F_q a finite field with q elements, b a fixed primitive root of F_q and e a given divisor of q-1. Then the cyclotomic number (h, k )_e of order e in F_q is defined as the number of ordered...Let q be a power of a prime, F_q a finite field with q elements, b a fixed primitive root of F_q and e a given divisor of q-1. Then the cyclotomic number (h, k )_e of order e in F_q is defined as the number of ordered pairs (s, t )展开更多
In this paper we improve the character approach to the multiplier conjecture that we presented after 1992, and thus we have made considerable progress in the case of n = 3n1. We prove that in the case of n = 3n1 Secon...In this paper we improve the character approach to the multiplier conjecture that we presented after 1992, and thus we have made considerable progress in the case of n = 3n1. We prove that in the case of n = 3n1 Second multiplier theorem remains true if the assumption “n1 > λ” is replaced by “(n1, λ) = 1”. Consequentially we prove that if we let D be a (v, k, λ)-difference set in an abelian group G, and n = 3pr for some prime p, (p,v) = 1, then p is a numerical multiplier of D.展开更多
基金This work is supported by SRFDP,the 973 Grant,the National Natural Science Foundation of China 10471118the Jiangsu Natural Science Foundation Bk2002023
文摘Let K2 be the Milnor functor and let Фn (x)∈ Q[X] be the n-th cyclotomic polynomial. Let Gn(Q) denote a subset consisting of elements of the form {a, Фn(a)}, where a ∈ Q^* and {, } denotes the Steinberg symbol in K2Q. J. Browkin proved that Gn(Q) is a subgroup of K2Q if n = 1,2, 3, 4 or 6 and conjectured that Gn(Q) is not a group for any other values of n. This conjecture was confirmed for n =2^T 3S or n = p^r, where p ≥ 5 is a prime number such that h(Q(ζp)) is not divisible by p. In this paper we confirm the conjecture for some n, where n is not of the above forms, more precisely, for n = 15, 21,33, 35, 60 or 105.
文摘Let q be a power of a prime, F_q a finite field with q elements, b a fixed primitive root of F_q and e a given divisor of q-1. Then the cyclotomic number (h, k )_e of order e in F_q is defined as the number of ordered pairs (s, t )
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19831070).
文摘In this paper we improve the character approach to the multiplier conjecture that we presented after 1992, and thus we have made considerable progress in the case of n = 3n1. We prove that in the case of n = 3n1 Second multiplier theorem remains true if the assumption “n1 > λ” is replaced by “(n1, λ) = 1”. Consequentially we prove that if we let D be a (v, k, λ)-difference set in an abelian group G, and n = 3pr for some prime p, (p,v) = 1, then p is a numerical multiplier of D.