There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of geno...There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop mo- lecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype- phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.展开更多
Crop breeding aims to generate pure in bred lines with multiple desired traits. Doubled haploid (DH) and genome editing using CRISPR/Cas9 are two powerful game-changing technologies in crop breeding. However, both of ...Crop breeding aims to generate pure in bred lines with multiple desired traits. Doubled haploid (DH) and genome editing using CRISPR/Cas9 are two powerful game-changing technologies in crop breeding. However, both of them still fall short for rapid generation of pure elite lines with integrated favorable traits. Here, we report the development of a Haploid-Inducer Mediated Genome Editing (IMGE) approach, which utilizes a maize haploid inducer line carrying a CRISPR/Cas9 cassette targeting for a desired agronomic trait to pollinate an elite maize in bred line and to generate genome-edited haploids in the elite maize background. Homozygous pure DH lines with the desired trait improvement could be generated within two generations, thus bypassing the lengthy procedure of repeated crossing and backcrossing used in conventional breeding for integrating a desirable trait into elite commercial backgrounds.展开更多
近10多年来,我国建立发展了外源 DNA 直接导入的作物育种新途径。本文根据大最的实验结果,研究论文和有关资料,对这项育种新途径进行了概括评述,扼要介绍了这项育种额途径的研究对象和历史;系统综述了这项育种新途径的研究进展。包括应...近10多年来,我国建立发展了外源 DNA 直接导入的作物育种新途径。本文根据大最的实验结果,研究论文和有关资料,对这项育种新途径进行了概括评述,扼要介绍了这项育种额途径的研究对象和历史;系统综述了这项育种新途径的研究进展。包括应用范围、导人技术、遗传变异以及新品种选育等;并对这项育种新途径有关概念、理论和技术等方面的问题作了初步讨论。展开更多
基金This study was supported by the National Key Research and Development Program of China (2016YFD0101802 and 2016YFE0108600) and National Natural Science Foundation of China (31550110212).
文摘There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop mo- lecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype- phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.
基金National Key R&D Program of China (2016YFD0100303 and 2016YFD0101001)Beijing Natural Science Foundation (6172032).
文摘Crop breeding aims to generate pure in bred lines with multiple desired traits. Doubled haploid (DH) and genome editing using CRISPR/Cas9 are two powerful game-changing technologies in crop breeding. However, both of them still fall short for rapid generation of pure elite lines with integrated favorable traits. Here, we report the development of a Haploid-Inducer Mediated Genome Editing (IMGE) approach, which utilizes a maize haploid inducer line carrying a CRISPR/Cas9 cassette targeting for a desired agronomic trait to pollinate an elite maize in bred line and to generate genome-edited haploids in the elite maize background. Homozygous pure DH lines with the desired trait improvement could be generated within two generations, thus bypassing the lengthy procedure of repeated crossing and backcrossing used in conventional breeding for integrating a desirable trait into elite commercial backgrounds.
文摘近10多年来,我国建立发展了外源 DNA 直接导入的作物育种新途径。本文根据大最的实验结果,研究论文和有关资料,对这项育种新途径进行了概括评述,扼要介绍了这项育种额途径的研究对象和历史;系统综述了这项育种新途径的研究进展。包括应用范围、导人技术、遗传变异以及新品种选育等;并对这项育种新途径有关概念、理论和技术等方面的问题作了初步讨论。