In this paper, we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping: 2f[(x1+x2)/2+y]=f(x1)+f(x2)+2f(y) ...In this paper, we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping: 2f[(x1+x2)/2+y]=f(x1)+f(x2)+2f(y) The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. This is applied to investigate isometric isomorphisms between proper CQ*-algebras.展开更多
基金supported by Korea Science & Engineering Foundation (Grant No. F01-2006-000-10111-0)
文摘In this paper, we prove the Hyers-Ulam-Rassias stability of isometric homomorphisms in proper CQ*-algebras for the following Cauchy-Jensen additive mapping: 2f[(x1+x2)/2+y]=f(x1)+f(x2)+2f(y) The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in the paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. This is applied to investigate isometric isomorphisms between proper CQ*-algebras.