In this paper, a biped water running robot is developed by mimicking the water-running pattern of basilisk lizards. The dynamic mechanism of the robot was studied based on Watt-I planar linkages, and the movement traj...In this paper, a biped water running robot is developed by mimicking the water-running pattern of basilisk lizards. The dynamic mechanism of the robot was studied based on Watt-I planar linkages, and the movement trajectory of the double bar Assur Group was deduced to simulate the water-running foot trajectories of the basilisk lizard. A Central Pattern Generator (CPG)-based fuzzy control method was proposed to control the robot for realizing balance control and gait adjustment. The effectiveness of the proposed control method was verified on the prototype of a water running robot (weight: 320 g). When the biped robot is running on water, the average force generated by the propulsion mechanism is 1.3 N, and the robot body tilt angle is 5~. The experiment results show that the propulsion mechanism is effective in realizing the basilisk lizards-like water running patterns, and the CPG-based fuzzy control method is effective in keeping the balance of the robot.展开更多
In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be proces...In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.展开更多
In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller...In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.展开更多
基金This work is supported by the National Natural Science Foundation of China (No. 50905175), and the National Program on Key Basic Research Project of China (No. 2011CB302106).
文摘In this paper, a biped water running robot is developed by mimicking the water-running pattern of basilisk lizards. The dynamic mechanism of the robot was studied based on Watt-I planar linkages, and the movement trajectory of the double bar Assur Group was deduced to simulate the water-running foot trajectories of the basilisk lizard. A Central Pattern Generator (CPG)-based fuzzy control method was proposed to control the robot for realizing balance control and gait adjustment. The effectiveness of the proposed control method was verified on the prototype of a water running robot (weight: 320 g). When the biped robot is running on water, the average force generated by the propulsion mechanism is 1.3 N, and the robot body tilt angle is 5~. The experiment results show that the propulsion mechanism is effective in realizing the basilisk lizards-like water running patterns, and the CPG-based fuzzy control method is effective in keeping the balance of the robot.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.