期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synergistic tuning of electrochemical surface area and surface Co^(3+)by oxygen plasma enhances the capacities of Co_(3)O_(4)lithium-oxygen battery cathodes
1
作者 Xueli Guo Liang Xiao +3 位作者 Pengfei Yan Ming Li Mingjun Zhu Jinping Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第11期3491-3495,共5页
Modifying electrochemical surface area(ECSA)and surface chemistry are promising approaches to enhance the capacities of oxygen cathodes for lithium-oxygen(Li-O_(2))batteries.Although various chemical approaches have b... Modifying electrochemical surface area(ECSA)and surface chemistry are promising approaches to enhance the capacities of oxygen cathodes for lithium-oxygen(Li-O_(2))batteries.Although various chemical approaches have been successfully used to tune the cathode surface,versatile physical techniques including plasma etching etc.could be more effortless and effective than arduous chemical treatments.Herein,for the first time,we propose a facile oxygen plasma treatment to simultaneously etch and modify the surface of Co_(3)O_(4)nanosheet arrays(NAs)cathode for Li-O_(2)batteries.The oxygen plasma not only etches Co_(3)O_(4)nanosheets to enhance the ECSA but also lowers the oxygen vacancy concentration to enable a Co^(3+)-rich surface.In addition,the NA architecture enables the full exposure of oxygen vacancies and surface Co^(3+)that function as the catalytically active sites.Thus,the synergistic effects of enhanced ECSA,modest oxygen vacancy and high surface Co^(3+)achieve a significantly enhanced reversible capacity of 3.45 mAh/cm^(2)for Co_(3)O_(4)NAs.This work not only develops a promising high-capacity cathode for Li-O_(2)batteries,but also provides a facile physical method to simultaneously tune the nanostructure and surface chemistry of energy storage materials. 展开更多
关键词 co_(3)o_(4)nanosheet arrays oxygen plasma Electrochemical surface area oxygen vacancy co^(3+)-rich surface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部