Modifying electrochemical surface area(ECSA)and surface chemistry are promising approaches to enhance the capacities of oxygen cathodes for lithium-oxygen(Li-O_(2))batteries.Although various chemical approaches have b...Modifying electrochemical surface area(ECSA)and surface chemistry are promising approaches to enhance the capacities of oxygen cathodes for lithium-oxygen(Li-O_(2))batteries.Although various chemical approaches have been successfully used to tune the cathode surface,versatile physical techniques including plasma etching etc.could be more effortless and effective than arduous chemical treatments.Herein,for the first time,we propose a facile oxygen plasma treatment to simultaneously etch and modify the surface of Co_(3)O_(4)nanosheet arrays(NAs)cathode for Li-O_(2)batteries.The oxygen plasma not only etches Co_(3)O_(4)nanosheets to enhance the ECSA but also lowers the oxygen vacancy concentration to enable a Co^(3+)-rich surface.In addition,the NA architecture enables the full exposure of oxygen vacancies and surface Co^(3+)that function as the catalytically active sites.Thus,the synergistic effects of enhanced ECSA,modest oxygen vacancy and high surface Co^(3+)achieve a significantly enhanced reversible capacity of 3.45 mAh/cm^(2)for Co_(3)O_(4)NAs.This work not only develops a promising high-capacity cathode for Li-O_(2)batteries,but also provides a facile physical method to simultaneously tune the nanostructure and surface chemistry of energy storage materials.展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.22075219 and 51972257)the National Key Research Program of China(No.2016YFA0202602)the Research Start-Up Fund from Wuhan University of Technology.
文摘Modifying electrochemical surface area(ECSA)and surface chemistry are promising approaches to enhance the capacities of oxygen cathodes for lithium-oxygen(Li-O_(2))batteries.Although various chemical approaches have been successfully used to tune the cathode surface,versatile physical techniques including plasma etching etc.could be more effortless and effective than arduous chemical treatments.Herein,for the first time,we propose a facile oxygen plasma treatment to simultaneously etch and modify the surface of Co_(3)O_(4)nanosheet arrays(NAs)cathode for Li-O_(2)batteries.The oxygen plasma not only etches Co_(3)O_(4)nanosheets to enhance the ECSA but also lowers the oxygen vacancy concentration to enable a Co^(3+)-rich surface.In addition,the NA architecture enables the full exposure of oxygen vacancies and surface Co^(3+)that function as the catalytically active sites.Thus,the synergistic effects of enhanced ECSA,modest oxygen vacancy and high surface Co^(3+)achieve a significantly enhanced reversible capacity of 3.45 mAh/cm^(2)for Co_(3)O_(4)NAs.This work not only develops a promising high-capacity cathode for Li-O_(2)batteries,but also provides a facile physical method to simultaneously tune the nanostructure and surface chemistry of energy storage materials.