碳捕集与封存(Carbon Capture and Storage,CCS)技术作为缓解全球气候变暖、减少CO_(2)排放的有效路径之一,其潜力评估至关重要。目前CCS技术主要包括CO_(2)强化石油(天然气)开采封存技术、CO_(2)驱替煤层气封存技术以及咸水层CO_(2)封...碳捕集与封存(Carbon Capture and Storage,CCS)技术作为缓解全球气候变暖、减少CO_(2)排放的有效路径之一,其潜力评估至关重要。目前CCS技术主要包括CO_(2)强化石油(天然气)开采封存技术、CO_(2)驱替煤层气封存技术以及咸水层CO_(2)封存技术3类。各类封存技术利用了不同的封存机制,其潜力评估方法也略有差别。油气藏封存和咸水层封存主要利用了构造圈闭储存、束缚空间储存、溶解储存、矿化储存等封存机制,煤层气封存主要利用了吸附封存机制。国内外学者和机构针对各类封存技术提出了相应的计算方法,依据其计算原理可归纳为4类物质平衡封存量计算法、有效容积封存量计算法、溶解机制封存量计算法以及考虑多种捕获机制的综合封存量计算法。通过对各类经典方法及其计算原理进行综述,剖析潜力封存量计算方法的内涵原理和应用场景,分析了CO_(2)地质封存潜力评价方法在实际应用中面临的问题,有助于提升我国的CCS潜力评价质量。展开更多
CO_(2)环境影响监测技术作为碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)体系的重要组成部分,贯穿整个储存过程,决定着CCUS工程的成败,对CCUS工程的有效性、持续性、安全性及碳减排效果的评估发挥着举足轻重的作...CO_(2)环境影响监测技术作为碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)体系的重要组成部分,贯穿整个储存过程,决定着CCUS工程的成败,对CCUS工程的有效性、持续性、安全性及碳减排效果的评估发挥着举足轻重的作用。为确保碳封存项目安全可靠运行,需要对环境影响、地层响应和CO_(2)地下运移等多个监测指标开展全流程测量和监控。不同监测阶段、不同监测指标下CO_(2)环境影响监测的重点会有所不同,相应的监测技术组合也略有差别。围绕地质封存中CO_(2)泄漏监测及泄漏源监测识别问题,系统剖析了CO_(2)环境影响监测技术的特点和应用场景,阐述了不同监测阶段、不同监测指标下CO_(2)环境影响监测技术方法的研究进展,总结了不同泄漏情景下CO_(2)环境影响监测技术方法的选择及其在实际应用中面临的问题,认为实时连续的监测设备研发、“大气-地表-地下”立体化快速监测技术体系以及长期有效的CO_(2)监测管理系统构建将是CO_(2)环境影响监测技术的发展方向。可为未来开展百万吨级碳封存工程的环境影响监测提供参考和借鉴。展开更多
二氧化碳(CO_(2))捕集与封存技术有利于减少CO_(2)的排放量,近年来针对CO_(2)地质封存形成了从纳米尺度到油气藏尺度的大量研究成果,大多数研究只针对单一维度多孔介质中流动行为开展研究,且物理实验方法受许多不确定性因素影响,十分耗...二氧化碳(CO_(2))捕集与封存技术有利于减少CO_(2)的排放量,近年来针对CO_(2)地质封存形成了从纳米尺度到油气藏尺度的大量研究成果,大多数研究只针对单一维度多孔介质中流动行为开展研究,且物理实验方法受许多不确定性因素影响,十分耗费时间和成本。为了从微观角度深入理解CO_(2)地质封存过程中的渗流行为,提高CO_(2)地质埋存量,基于追踪两相界面动态变化的VOF(Volume of Fluid)方法,分别建立了2D和3D模型,开展了超临界CO_(2)-水两相流动数值模拟研究,对比了不同润湿性、毛细管数、黏度比条件下的CO_(2)团簇分布特征、CO_(2)饱和度变化规律,揭示了孔隙尺度CO_(2)埋存的内在机理。研究结果表明:①随着岩石对CO_(2)润湿性增加,CO_(2)波及范围扩大,同时CO_(2)团簇的卡断频率减少,CO_(2)埋存量增加;②随着毛细管数的增加,驱替模式由毛细指进转变为稳定驱替,CO_(2)埋存量增加;③随着注入超临界CO_(2)黏度逐渐接近水的黏度,两相流体之间的流动阻力降低,促进了“润滑效应”,CO_(2)相的渗流能力提高,CO_(2)埋存量增加;④润湿性、毛细管数、黏度比在不同维度多孔介质模型中对CO_(2)饱和度的影响程度不同。结论认为,基于VOF方法的CO_(2)-水两相渗流模拟研究在孔隙尺度上揭示了CO_(2)地质封存过程中的渗流机理,对CCUS技术的发展有指导意义,也为更大尺度的CO_(2)地质封存研究提供了理论指导和技术支撑。展开更多
文摘碳捕集与封存(Carbon Capture and Storage,CCS)技术作为缓解全球气候变暖、减少CO_(2)排放的有效路径之一,其潜力评估至关重要。目前CCS技术主要包括CO_(2)强化石油(天然气)开采封存技术、CO_(2)驱替煤层气封存技术以及咸水层CO_(2)封存技术3类。各类封存技术利用了不同的封存机制,其潜力评估方法也略有差别。油气藏封存和咸水层封存主要利用了构造圈闭储存、束缚空间储存、溶解储存、矿化储存等封存机制,煤层气封存主要利用了吸附封存机制。国内外学者和机构针对各类封存技术提出了相应的计算方法,依据其计算原理可归纳为4类物质平衡封存量计算法、有效容积封存量计算法、溶解机制封存量计算法以及考虑多种捕获机制的综合封存量计算法。通过对各类经典方法及其计算原理进行综述,剖析潜力封存量计算方法的内涵原理和应用场景,分析了CO_(2)地质封存潜力评价方法在实际应用中面临的问题,有助于提升我国的CCS潜力评价质量。
文摘CO_(2)环境影响监测技术作为碳捕集、利用与封存(Carbon Capture,Utilization and Storage,CCUS)体系的重要组成部分,贯穿整个储存过程,决定着CCUS工程的成败,对CCUS工程的有效性、持续性、安全性及碳减排效果的评估发挥着举足轻重的作用。为确保碳封存项目安全可靠运行,需要对环境影响、地层响应和CO_(2)地下运移等多个监测指标开展全流程测量和监控。不同监测阶段、不同监测指标下CO_(2)环境影响监测的重点会有所不同,相应的监测技术组合也略有差别。围绕地质封存中CO_(2)泄漏监测及泄漏源监测识别问题,系统剖析了CO_(2)环境影响监测技术的特点和应用场景,阐述了不同监测阶段、不同监测指标下CO_(2)环境影响监测技术方法的研究进展,总结了不同泄漏情景下CO_(2)环境影响监测技术方法的选择及其在实际应用中面临的问题,认为实时连续的监测设备研发、“大气-地表-地下”立体化快速监测技术体系以及长期有效的CO_(2)监测管理系统构建将是CO_(2)环境影响监测技术的发展方向。可为未来开展百万吨级碳封存工程的环境影响监测提供参考和借鉴。
文摘二氧化碳(CO_(2))捕集与封存技术有利于减少CO_(2)的排放量,近年来针对CO_(2)地质封存形成了从纳米尺度到油气藏尺度的大量研究成果,大多数研究只针对单一维度多孔介质中流动行为开展研究,且物理实验方法受许多不确定性因素影响,十分耗费时间和成本。为了从微观角度深入理解CO_(2)地质封存过程中的渗流行为,提高CO_(2)地质埋存量,基于追踪两相界面动态变化的VOF(Volume of Fluid)方法,分别建立了2D和3D模型,开展了超临界CO_(2)-水两相流动数值模拟研究,对比了不同润湿性、毛细管数、黏度比条件下的CO_(2)团簇分布特征、CO_(2)饱和度变化规律,揭示了孔隙尺度CO_(2)埋存的内在机理。研究结果表明:①随着岩石对CO_(2)润湿性增加,CO_(2)波及范围扩大,同时CO_(2)团簇的卡断频率减少,CO_(2)埋存量增加;②随着毛细管数的增加,驱替模式由毛细指进转变为稳定驱替,CO_(2)埋存量增加;③随着注入超临界CO_(2)黏度逐渐接近水的黏度,两相流体之间的流动阻力降低,促进了“润滑效应”,CO_(2)相的渗流能力提高,CO_(2)埋存量增加;④润湿性、毛细管数、黏度比在不同维度多孔介质模型中对CO_(2)饱和度的影响程度不同。结论认为,基于VOF方法的CO_(2)-水两相渗流模拟研究在孔隙尺度上揭示了CO_(2)地质封存过程中的渗流机理,对CCUS技术的发展有指导意义,也为更大尺度的CO_(2)地质封存研究提供了理论指导和技术支撑。