Dendrobium officinale has high medicinal value but grows slowly in natural environment due to its special CAM photosynthetic pathway.In this study,D.officinale were grown aeroponically with light/dark cycles of 12 h/1...Dendrobium officinale has high medicinal value but grows slowly in natural environment due to its special CAM photosynthetic pathway.In this study,D.officinale were grown aeroponically with light/dark cycles of 12 h/12 h,4 h/4 h,and 2 h/2 h for 150 d.The photosynthetic electron transfer characteristics,photosynthetic CO_(2) fixation pathways,and accumulations of biomass and soluble polysaccharides in D.officinale leaves were studied.The results showed that the photosynthetic apparatus states of D.officinale in aeroponic cultivation under short light/dark cycles of 4 h/4 h and 2 h/2 h were better than that under 12 h/12 h.The dark net CO_(2) exchange percentages of D.officinale were negative in short light/dark cycles of 4 h/4 h and 2 h/2 h,and the daily net CO_(2) exchange amount and dry/fresh weight increases were doubled compared with those in 12 h/12 h light/dark cycle.High soluble polysaccharides content and the soluble polysaccharides yield of D.officinale were obtained in the shorter light/dark cycle of 2 h/2 h.Therefore,the photosynthetic pathway of D.officinale could be switched from CAM to C3 by short light/dark cycles of 4 h/4 h and 2 h/2 h,and its higher biomass accumulation and soluble polysaccharides yield could be obtained by the shorter light/dark cycle of 2 h/2 h in aeroponic cultivation.展开更多
Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have...Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have been widely used to research water and carbon cycles of terrestrial ecosystems.Given the advantages and limitations of each method,combining simulations and observations through a data assimilation technique has been proven to be highly promising for improving carbon-water flux simulation.However,to the best of our knowledge,few studies have accomplished both parameter optimization and the updating of model state variables through data assimilation for carbon-water flux simulation in multiple vegetation types.And little is known about the variation of the performance of data assimilation for carbon-water flux simulation in different vegetation types.Methods:In this study,we assimilated leaf area index(LAI)time-series observations into a biogeochemical model(Biome-BGC)using different assimilation algorithms(ensemble Kalman filter algorithm(EnKF)and unscented Kalman filter(UKF))in different vegetation types(deciduous broad-leaved forest(DBF),evergreen broad-leaved forest(EBF)and grassland(GL))to simulate carbon-water flux.Results:The validation of the results against the eddy covariance measurements indicated that,overall,compared with the original simulation,assimilating the LAI into the Biome-BGC model improved the carbon-water flux simulations(R^(2)increased by 35%,root mean square error decreased by 10%;the sum of the absolute error decreased by 8%)but more significantly,improved the water flux simulations(R^(2)increased by 31%,root mean square error decreased by 18%;the sum of the absolute error decreased by 16%).Among the different forest types,the data assimilation techniques(both EnKF and UKF)achieved the best performance towards carbon-water flux in EBF(R^(2)increased by 44%,root mean square error decreased by 24%;the sum of the absolute error decreased by 28%),and the performances of EnKF an展开更多
Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead...Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead to either net accumulation or loss of soil C.While there are many studies on the effect of water availability on biomass production and soil C stocks,much less is known about the effect of the frequency of water inputs on the components of CO_(2)exchange.We grew Bermuda grass(Cynodon dactylon L.)in mesocosms under irrigation frequencies of every day(I_(1) treatment,30 d),every two days(I_(2) treatment,12 d),every three days(I_(3) treatment,30 d),and every six days(I_(6) treatment,18 d,after I_(2) treatment).Rates of CO_(2)exchange for estimating net ecosystem CO_(2)exchange(F_(N)),ecosystem respiration(R_(E)),and soil respiration(R_(S))were measured,and gross C uptake by plants(F_(G))and respiration from leaves(R_(L))were calculated during two periods,1–12 and 13–30 d,of the 30-d experiment.During the first 12 d,there were no significant differences in cumulative F_(N)(mean±standard deviation,61±30 g C m^(-2),n=4).During the subsequent 18 d,cumulative F_(N) decreased with decreasing irrigation frequency and increasing cumulative soil water deficit(W),with values of 70±22,60±16,and 18±12 g C m^(-2) for the I_(1),I_(3),and I_(6) treatments,respectively.There were similar decreases in F_(G),R_(E),and R_(L) with increasing W,but differences in R_(S) were not significant.Use of the C_(4) grass growing in a C_(3)-derived soil enabled partitioning of R_(S) into its autotrophic(R_(A))and heterotrophic(R_(H))components using a^(13)C natural abundance isotopic technique at the end of the experiment when differences in cumulative W between the treatments were the greatest.The values of R_(H) and its percentage contributions to R_(S)(43%±8%,42%±8%,and 8%±5%for the I_(1),I_(3),and I_(6) treatments,respectively)suggested that R_(H) remained unaffected across a wide range of W and then decreased under 展开更多
Aims Riparian ecosystems play an important role in overall ecosystem function,including the global carbon cycle of terrestrial ecosystems,at both landscape and global scales.Yet few studies have reported in situ measu...Aims Riparian ecosystems play an important role in overall ecosystem function,including the global carbon cycle of terrestrial ecosystems,at both landscape and global scales.Yet few studies have reported in situ measurements of CO_(2) in riparian areas where flooding is a unique disturbance to carbon cycling.Methods At multiple locations across riparian zones(RZ)with different water submergences in Xiangxi Bay(XXB),we studied seasonal variations of CO_(2) exchange between this Cynodon-dominated community and the atmosphere for 2 years by using static chambers.Important Findings We found that the seasonal changes in CO_(2) fluxes were apparent and dependent on the biophysical environment.In the beginning of spring,low gross primary productivity(GPP)in lightly flooded zones(LFZ)resulted in a positive net ecosystem exchange(NEE),indicating a net CO_(2) source.With the increase in temperature,more species and vegetation abundance appeared,and the increased GPP turned the LFZ from a net CO_(2) source into a sink.This transi-tion seemed predominantly controlled by the physiological growth of vegetation.The mean NEEs,REs and the light-use efficiency(α)of the vegetation at HFZ and MFZ were significantly higher than those at LFZ and UFZ.Yet the coefficients of variation(CV)of NEE and RE at MFZ and HFZ were lower than those at LFZ and UFZ.Submergence promoted the emission and uptake of CO_(2) to the atmosphere.Elongated submergence reduced the number of spe-cies and lowered the spatial variability of the RZ,further lowering the variation of the CO_(2) exchange.展开更多
Introduction:Understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests(ENFs)is crucial for accurately estimating regional or global carbon and water budgets a...Introduction:Understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests(ENFs)is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate.Methods:We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon(NEE),gross primary production(GPP),and evapotranspiration(ET).We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature(T_(a))and vapor pressure deficit(VPD)for NEE and ET.Results:We found larger differences in the NEE spectra than in the ET spectra across sites,demonstrating that spatial(site-to-site)variability was larger for NEE than for ET.The NEE and ET were decoupled differently across ENF sites because the wavelet cospectra between ET and climate variables were similar at all sites,while the wavelet cospectra between NEE and climate variables were higher(i.e.,closer coupling between NEE and climatic drivers)in semi-arid and Mediterranean sites than in other sites.Ecosystem water use efficiency(EWUE)based on annual GPP/ET ranged from 1.3±0.18 to 4.08±0.62 g C mm^(−1) ET,while EWUE based on annual net ecosystem production(NEP)/ET ranged from 0.06±0.04 to 1.02±0.16 g C mm^(−1) ET)among ENFs.Responses of NEE and ET to T_(a) varied across climatic zones.In particular,for ENF sites in semi-arid and Mediterranean climates,the maximum NEE and ET occurred at lower ranges of T_(a) than in sites with warm and humid summers.The optimum T_(a) and VPD values were higher for ET than for NEE,and ET was less sensitive to high values of T_(a) and VPD.Conclusions:Large spatial variability in carbon and water vapor fluxes among ENFs and large variations in responses of NEE and ET to major climate variables among climatic zones necessitate sub-plant functional type parameterization b展开更多
Aims Humid savannas,as a result of high precipitation amounts,are highly productive.they are also hotspots for land use change and potential sources of carbon dioxide(CO_(2))due to the large soil carbon(C)stocks.under...Aims Humid savannas,as a result of high precipitation amounts,are highly productive.they are also hotspots for land use change and potential sources of carbon dioxide(CO_(2))due to the large soil carbon(C)stocks.understanding how ecosystem CO_(2) exchange is influenced by changes arising from agricultural land use is vital in future management of these ecosystems and in responding to the ongoing shifts in manage-ment and climate.the aim of this study was to identify how ecosystem CO_(2) exchange and biomass productivity of the herbaceous layer of a humid savanna in Kenya respond to current management practices.Methods We used flux chambers to quantify CO_(2) fluxes,while monthly harvests were undertaken to determine biomass development of the herba-ceous layer of three sites that were(i)fenced to exclude livestock graz-ing,(ii)subjected to grazing by livestock and(iii)abandoned after being cultivated for maize production and also open to grazing by livestock.Important findingsthe peak aboveground biomass ranged between 380 and 1449 g m−2 and biomass production was significantly(P<0.05)lower in the grazed and abandoned plots.the maximum gross primary production(gPP)and net ecosystem CO_(2) exchange(NEE)ranged between 21.8±1.3 to 32.5±2.7 and−9.6±0.7 to−17.9±4.8μmol m−2 s−1,respectively.seasonal NEE fluctuations ranged between 10 and 21μmol m−2s−1,while spatial(among sites)differences ranged between 2 and 10μmol m−2 s−1.Ecosystem respiration(Reco)fluc-tuated between 5 and 10μmol m−2 s−1 during the growing sea-son.Reco was,however,not significantly different among the sites.unlike in other similar ecosystems where ecosystem respiration is determined by the ambient temperature,we did not find any rela-tionship between Reco and temperature in this savanna.Instead,soil moisture accounted for 38-88%of the spatial and seasonal fluc-tuations in ecosystem CO_(2) fluxes and aboveground biomass pro-duction.management influenced the maximum gPP and NEE rates through modification of soil moisture,展开更多
Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes a...Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes and meteorological data obtained,the relationships among the CO_(2) fluxes,the cloud amount,and the meteorological factors in alpine meadow ecosystem were explored and analyzed.Some conclusions can be drawn from the discussion with previous researches as following:(1)the cloud amount can affect the net ecosystem CO_(2) exchange(NEE)of alpine meadow on Tibetan Plateau;(2)the soil temperature sensitive to the cloud amount,is a major environmental controlling factor for NEE,and closely relates to the maximum of NEE.In the moming period with large cloud amount,the NEE reaches its maximum when the clearness index ranges from 0.5 to 0.7;yet in the afternoon it comes to the maximum with the index from 0.2 to 0.35.The span of soil temperature covers from 12 to 15℃as the NEE at its highest;(3)the scatterplots between NEE and photosynthetic available radiation(PAR)was a significant inverse triangle in the clear day,two different kinds of concave curves in the cloudy day,and strongly convergent rectangular hyperbola in the overcast day.These differences were controlled by the changes of light radiation and soil temperature.展开更多
采用涡度相关法,对2018年下半年辽河口国家级自然保护区内滨海芦苇湿地的净生态系统CO2交换(NEE)、总初级生产力(GPP)和生态系统呼吸(R_(eco))进行测量分析,研究海洋保护区内典型芦苇湿地生态系统-大气CO_(2)交换的变化规律及其环境调...采用涡度相关法,对2018年下半年辽河口国家级自然保护区内滨海芦苇湿地的净生态系统CO2交换(NEE)、总初级生产力(GPP)和生态系统呼吸(R_(eco))进行测量分析,研究海洋保护区内典型芦苇湿地生态系统-大气CO_(2)交换的变化规律及其环境调控。结果表明,有芦苇生长的7月-10月,各月NEE日变化曲线呈相似的"U"形,但变化幅度存在较大差异;非芦苇生长季的11月-12月,生态系统表现为微弱的净CO_(2)释放,NEE日变化轨迹与温度波动一致。该芦苇湿地生态系统的GPP、R_(eco)和NEE均呈现7月-10月数值较大、11月-12月数值较小的规律。7月-10月,白天CO_(2)交换主要受芦苇光合作用的影响,各月白天NEE与光合有效辐射(PAR)之间呈直角双曲线关系,PAR可以解释白天NEE变化的45%~54%。7月-12月,夜间R_(eco)与气温呈指数关系,气温可以解释R_(eco)变化的62%,生态系统呼吸敏感性(Q_(10))为2.20。2018年下半年,辽河口国家级自然保护区内芦苇湿地生态系统累计GPP总值达到359.67 g C/m^(2),累计Reco达到278.29 g C/m^(2),总净固碳量为81.38g C/m^(2)。展开更多
基金supported by China Agriculture Research System(Grant No.CARS-21)National Natural Science Foundation of China(Grant No.31372089)。
文摘Dendrobium officinale has high medicinal value but grows slowly in natural environment due to its special CAM photosynthetic pathway.In this study,D.officinale were grown aeroponically with light/dark cycles of 12 h/12 h,4 h/4 h,and 2 h/2 h for 150 d.The photosynthetic electron transfer characteristics,photosynthetic CO_(2) fixation pathways,and accumulations of biomass and soluble polysaccharides in D.officinale leaves were studied.The results showed that the photosynthetic apparatus states of D.officinale in aeroponic cultivation under short light/dark cycles of 4 h/4 h and 2 h/2 h were better than that under 12 h/12 h.The dark net CO_(2) exchange percentages of D.officinale were negative in short light/dark cycles of 4 h/4 h and 2 h/2 h,and the daily net CO_(2) exchange amount and dry/fresh weight increases were doubled compared with those in 12 h/12 h light/dark cycle.High soluble polysaccharides content and the soluble polysaccharides yield of D.officinale were obtained in the shorter light/dark cycle of 2 h/2 h.Therefore,the photosynthetic pathway of D.officinale could be switched from CAM to C3 by short light/dark cycles of 4 h/4 h and 2 h/2 h,and its higher biomass accumulation and soluble polysaccharides yield could be obtained by the shorter light/dark cycle of 2 h/2 h in aeroponic cultivation.
基金supported by the National Natural Science Foundation of China(No.41301451).
文摘Background:The accurate estimation of carbon-water flux is critical for understanding the carbon and water cycles of terrestrial ecosystems and further mitigating climate change.Model simulations and observations have been widely used to research water and carbon cycles of terrestrial ecosystems.Given the advantages and limitations of each method,combining simulations and observations through a data assimilation technique has been proven to be highly promising for improving carbon-water flux simulation.However,to the best of our knowledge,few studies have accomplished both parameter optimization and the updating of model state variables through data assimilation for carbon-water flux simulation in multiple vegetation types.And little is known about the variation of the performance of data assimilation for carbon-water flux simulation in different vegetation types.Methods:In this study,we assimilated leaf area index(LAI)time-series observations into a biogeochemical model(Biome-BGC)using different assimilation algorithms(ensemble Kalman filter algorithm(EnKF)and unscented Kalman filter(UKF))in different vegetation types(deciduous broad-leaved forest(DBF),evergreen broad-leaved forest(EBF)and grassland(GL))to simulate carbon-water flux.Results:The validation of the results against the eddy covariance measurements indicated that,overall,compared with the original simulation,assimilating the LAI into the Biome-BGC model improved the carbon-water flux simulations(R^(2)increased by 35%,root mean square error decreased by 10%;the sum of the absolute error decreased by 8%)but more significantly,improved the water flux simulations(R^(2)increased by 31%,root mean square error decreased by 18%;the sum of the absolute error decreased by 16%).Among the different forest types,the data assimilation techniques(both EnKF and UKF)achieved the best performance towards carbon-water flux in EBF(R^(2)increased by 44%,root mean square error decreased by 24%;the sum of the absolute error decreased by 28%),and the performances of EnKF an
基金funded by the New Zealand Agricultural Greenhouse Gas Research Centre(NZAGRC)National Natural Science Foundation of China(No.32101431)。
文摘Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead to either net accumulation or loss of soil C.While there are many studies on the effect of water availability on biomass production and soil C stocks,much less is known about the effect of the frequency of water inputs on the components of CO_(2)exchange.We grew Bermuda grass(Cynodon dactylon L.)in mesocosms under irrigation frequencies of every day(I_(1) treatment,30 d),every two days(I_(2) treatment,12 d),every three days(I_(3) treatment,30 d),and every six days(I_(6) treatment,18 d,after I_(2) treatment).Rates of CO_(2)exchange for estimating net ecosystem CO_(2)exchange(F_(N)),ecosystem respiration(R_(E)),and soil respiration(R_(S))were measured,and gross C uptake by plants(F_(G))and respiration from leaves(R_(L))were calculated during two periods,1–12 and 13–30 d,of the 30-d experiment.During the first 12 d,there were no significant differences in cumulative F_(N)(mean±standard deviation,61±30 g C m^(-2),n=4).During the subsequent 18 d,cumulative F_(N) decreased with decreasing irrigation frequency and increasing cumulative soil water deficit(W),with values of 70±22,60±16,and 18±12 g C m^(-2) for the I_(1),I_(3),and I_(6) treatments,respectively.There were similar decreases in F_(G),R_(E),and R_(L) with increasing W,but differences in R_(S) were not significant.Use of the C_(4) grass growing in a C_(3)-derived soil enabled partitioning of R_(S) into its autotrophic(R_(A))and heterotrophic(R_(H))components using a^(13)C natural abundance isotopic technique at the end of the experiment when differences in cumulative W between the treatments were the greatest.The values of R_(H) and its percentage contributions to R_(S)(43%±8%,42%±8%,and 8%±5%for the I_(1),I_(3),and I_(6) treatments,respectively)suggested that R_(H) remained unaffected across a wide range of W and then decreased under
基金This research was a part of the project funded by the National Natural Science Foundation of China(NSFC)(NO.30900196 and NO.51278281)to Three Georges UniversityIt was also funded by Natural Science Foundation of Hubei Province(2015CFC834)+1 种基金Provincial Department of Education Scientific research projects(Q20151209)the Key Laboratory of Aquatic Botany and Watershed Ecology at the Chinese Academy of Sciences,and Engineering Research Center of Eco-environment in Three Gorges Reservoir Region,Ministry of Education(KF2016-03).
文摘Aims Riparian ecosystems play an important role in overall ecosystem function,including the global carbon cycle of terrestrial ecosystems,at both landscape and global scales.Yet few studies have reported in situ measurements of CO_(2) in riparian areas where flooding is a unique disturbance to carbon cycling.Methods At multiple locations across riparian zones(RZ)with different water submergences in Xiangxi Bay(XXB),we studied seasonal variations of CO_(2) exchange between this Cynodon-dominated community and the atmosphere for 2 years by using static chambers.Important Findings We found that the seasonal changes in CO_(2) fluxes were apparent and dependent on the biophysical environment.In the beginning of spring,low gross primary productivity(GPP)in lightly flooded zones(LFZ)resulted in a positive net ecosystem exchange(NEE),indicating a net CO_(2) source.With the increase in temperature,more species and vegetation abundance appeared,and the increased GPP turned the LFZ from a net CO_(2) source into a sink.This transi-tion seemed predominantly controlled by the physiological growth of vegetation.The mean NEEs,REs and the light-use efficiency(α)of the vegetation at HFZ and MFZ were significantly higher than those at LFZ and UFZ.Yet the coefficients of variation(CV)of NEE and RE at MFZ and HFZ were lower than those at LFZ and UFZ.Submergence promoted the emission and uptake of CO_(2) to the atmosphere.Elongated submergence reduced the number of spe-cies and lowered the spatial variability of the RZ,further lowering the variation of the CO_(2) exchange.
基金supported in part by grants from the Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture(NIFA,Grant No.2013-69002 to P.Wagle,X.Xiao,and P.Gowda,and Grant No.2013-67003-20652 to B.Law)the National Science Foundation EPSCoR(IIA-1301789 to X.Xiao)+8 种基金supported by US Department of Energy(Grant No.65076)to B.Lawsupported by the North American Carbon Program/USDA CREES NRI(2004-35111-15057,2008-35101-19076)Science Foundation Arizona(CAA 0-203-08)to T.Kolbsupported by grants from US Department of Energy[the National Institute for Climate Change Research(NICCR)and Terrestrial Carbon Processes Program(TCP)]the National Science Foundation Environmental Biology(Grant 0918565)supported by an agreement among the University of Washington,the Pacific Northwest Research Station,and the Gifford Pinchot National Forestsupported by DOE BER-TES awards number 7090112 and 11-DE-SC-0006700USDA NIFA CAP 560 Award 2011-68002-30185USDA Forest Service Eastern Forest Environmental Threat Assessment Center Grant 08-JV-11330147-038。
文摘Introduction:Understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests(ENFs)is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate.Methods:We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon(NEE),gross primary production(GPP),and evapotranspiration(ET).We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature(T_(a))and vapor pressure deficit(VPD)for NEE and ET.Results:We found larger differences in the NEE spectra than in the ET spectra across sites,demonstrating that spatial(site-to-site)variability was larger for NEE than for ET.The NEE and ET were decoupled differently across ENF sites because the wavelet cospectra between ET and climate variables were similar at all sites,while the wavelet cospectra between NEE and climate variables were higher(i.e.,closer coupling between NEE and climatic drivers)in semi-arid and Mediterranean sites than in other sites.Ecosystem water use efficiency(EWUE)based on annual GPP/ET ranged from 1.3±0.18 to 4.08±0.62 g C mm^(−1) ET,while EWUE based on annual net ecosystem production(NEP)/ET ranged from 0.06±0.04 to 1.02±0.16 g C mm^(−1) ET)among ENFs.Responses of NEE and ET to T_(a) varied across climatic zones.In particular,for ENF sites in semi-arid and Mediterranean climates,the maximum NEE and ET occurred at lower ranges of T_(a) than in sites with warm and humid summers.The optimum T_(a) and VPD values were higher for ET than for NEE,and ET was less sensitive to high values of T_(a) and VPD.Conclusions:Large spatial variability in carbon and water vapor fluxes among ENFs and large variations in responses of NEE and ET to major climate variables among climatic zones necessitate sub-plant functional type parameterization b
文摘Aims Humid savannas,as a result of high precipitation amounts,are highly productive.they are also hotspots for land use change and potential sources of carbon dioxide(CO_(2))due to the large soil carbon(C)stocks.understanding how ecosystem CO_(2) exchange is influenced by changes arising from agricultural land use is vital in future management of these ecosystems and in responding to the ongoing shifts in manage-ment and climate.the aim of this study was to identify how ecosystem CO_(2) exchange and biomass productivity of the herbaceous layer of a humid savanna in Kenya respond to current management practices.Methods We used flux chambers to quantify CO_(2) fluxes,while monthly harvests were undertaken to determine biomass development of the herba-ceous layer of three sites that were(i)fenced to exclude livestock graz-ing,(ii)subjected to grazing by livestock and(iii)abandoned after being cultivated for maize production and also open to grazing by livestock.Important findingsthe peak aboveground biomass ranged between 380 and 1449 g m−2 and biomass production was significantly(P<0.05)lower in the grazed and abandoned plots.the maximum gross primary production(gPP)and net ecosystem CO_(2) exchange(NEE)ranged between 21.8±1.3 to 32.5±2.7 and−9.6±0.7 to−17.9±4.8μmol m−2 s−1,respectively.seasonal NEE fluctuations ranged between 10 and 21μmol m−2s−1,while spatial(among sites)differences ranged between 2 and 10μmol m−2 s−1.Ecosystem respiration(Reco)fluc-tuated between 5 and 10μmol m−2 s−1 during the growing sea-son.Reco was,however,not significantly different among the sites.unlike in other similar ecosystems where ecosystem respiration is determined by the ambient temperature,we did not find any rela-tionship between Reco and temperature in this savanna.Instead,soil moisture accounted for 38-88%of the spatial and seasonal fluc-tuations in ecosystem CO_(2) fluxes and aboveground biomass pro-duction.management influenced the maximum gPP and NEE rates through modification of soil moisture,
基金Under the auspices of the Major Basic Research Development Program of China(Grant no.2005CB422005)the Knowledge Innovation Program of Chinese Academy of Sciences(Grant no.KSCXZ-YW-N-44)
文摘Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes and meteorological data obtained,the relationships among the CO_(2) fluxes,the cloud amount,and the meteorological factors in alpine meadow ecosystem were explored and analyzed.Some conclusions can be drawn from the discussion with previous researches as following:(1)the cloud amount can affect the net ecosystem CO_(2) exchange(NEE)of alpine meadow on Tibetan Plateau;(2)the soil temperature sensitive to the cloud amount,is a major environmental controlling factor for NEE,and closely relates to the maximum of NEE.In the moming period with large cloud amount,the NEE reaches its maximum when the clearness index ranges from 0.5 to 0.7;yet in the afternoon it comes to the maximum with the index from 0.2 to 0.35.The span of soil temperature covers from 12 to 15℃as the NEE at its highest;(3)the scatterplots between NEE and photosynthetic available radiation(PAR)was a significant inverse triangle in the clear day,two different kinds of concave curves in the cloudy day,and strongly convergent rectangular hyperbola in the overcast day.These differences were controlled by the changes of light radiation and soil temperature.
文摘采用涡度相关法,对2018年下半年辽河口国家级自然保护区内滨海芦苇湿地的净生态系统CO2交换(NEE)、总初级生产力(GPP)和生态系统呼吸(R_(eco))进行测量分析,研究海洋保护区内典型芦苇湿地生态系统-大气CO_(2)交换的变化规律及其环境调控。结果表明,有芦苇生长的7月-10月,各月NEE日变化曲线呈相似的"U"形,但变化幅度存在较大差异;非芦苇生长季的11月-12月,生态系统表现为微弱的净CO_(2)释放,NEE日变化轨迹与温度波动一致。该芦苇湿地生态系统的GPP、R_(eco)和NEE均呈现7月-10月数值较大、11月-12月数值较小的规律。7月-10月,白天CO_(2)交换主要受芦苇光合作用的影响,各月白天NEE与光合有效辐射(PAR)之间呈直角双曲线关系,PAR可以解释白天NEE变化的45%~54%。7月-12月,夜间R_(eco)与气温呈指数关系,气温可以解释R_(eco)变化的62%,生态系统呼吸敏感性(Q_(10))为2.20。2018年下半年,辽河口国家级自然保护区内芦苇湿地生态系统累计GPP总值达到359.67 g C/m^(2),累计Reco达到278.29 g C/m^(2),总净固碳量为81.38g C/m^(2)。