The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze ...The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
The burgeoning global economy during the past decades gives rise to the continuous increase in fossil fuels consumption and rapid growth of CO_(2) emission,which demands an urgent exploration into green and sustainabl...The burgeoning global economy during the past decades gives rise to the continuous increase in fossil fuels consumption and rapid growth of CO_(2) emission,which demands an urgent exploration into green and sustainable devices for energy storage and power management.Supercapacitors based on activated carbon electrodes are promising systems for highly efficient energy harvesting and power supply,but their promotion is hindered by the moderate energy density compared with batteries.Therefore,scalable conversion of CO_(2) into novel carbon nanostructures offers a powerful alternative to tackle both issues:mitigating the greenhouse effect caused by redundant atmospheric CO_(2) and providing carbon materials with enhanced electrochemical performances.In this tutorial review,the techniques,opportunities and barriers in the design and fabrication of advanced carbon materials using CO_(2) as feedstock as well as their impact on the energy-storage performances of supercapacitors are critically examined.In particular,the chemical aspects of various Cv2 conversion reactions are highlighted to establish a detailed understanding for the science and technology involved in the microstructural evolution,surface engineering and porosity control of CO_(2)-converted carbon nanostructures.Finally,the prospects and challenges associated with the industrialization of CO_(2) conversion and their practical application in supercapacitors are also discussed.展开更多
Upgrading of atmospheric CO_(2) into high-value-added acetate using renewable electricity via electrocatalysis solely remains a great challenge.Here,inspired by microbial synthesis via biocatalysts,we present a couple...Upgrading of atmospheric CO_(2) into high-value-added acetate using renewable electricity via electrocatalysis solely remains a great challenge.Here,inspired by microbial synthesis via biocatalysts,we present a coupled system to produce acetate from CO_(2) by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates.A 3D Bi_(2)O_(3)@CF integrated electrode with an ice-sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy,wherein Bi_(2)O_(3) microspheres were decorated on carbon fibers.This ice-sugar gourd-shaped architecture endows electrodes with multiple structural advantages,including synergistic contribution,high mass transport capability,high structural stability,and large surface area.Consequently,the resultant Bi_(2)O_(3)@CF exhibited a maximum Faradic efficiency of 92.4%at−1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO_(3),exceeding that of Bi_(2)O_(3)/CF prepared using a conventional electrode preparation strategy.Benefiting from the high formate selectivity,unique architecture,and good biocompatibility,the Bi_(2)O_(3)@CF electrode attached with enriched CO_(2)-fixing electroautotrophs served as a biocathode.As a result,a considerable acetate yield rate of 0.269±0.009 g L^(−1) day^(−1)(a total acetate yield of 3.77±0.12 g L^(−1) during 14-day operation)was achieved in the electrochemical–microbial system equipped with Bi_(2)O_(3)@CF.展开更多
The conversion of carbon dioxide into useful fuels or chemical feedstocks is of great importance for achieving carbon emission peak and carbon neutrality. The harvesting and conversion of solar energy will provide a s...The conversion of carbon dioxide into useful fuels or chemical feedstocks is of great importance for achieving carbon emission peak and carbon neutrality. The harvesting and conversion of solar energy will provide a sustainable and environmentally friendly energy source for human production and living.Very recently, photothermal catalysis has been proved to exhibit great advantages in reducing the reaction temperature, promoting the catalytic activity, and manipulating the reaction pathway in comparison with traditional thermal catalysis. In this review, we firstly introduced the fundamental mechanisms and categories of photothermal catalysis to understand the synergy or the difference between photochemical and thermochemical reaction pathways. Subsequently, the criteria and strategies for photothermal catalyst design are discussed in order to inspire the development of high-efficiency photothermal catalytic route by achieving intense absorption of broadband solar energy spectrum and high conversion capability of solar-to-heat. Recent progress in CO_(2)reduction achieved by photothermal catalysis was summarized in terms of production types. In the end, the future challenges and perspectives of photothermal catalytic CO_(2)reduction are presented. We hope that this review will not only deepen the understanding of photothermal catalysis, but also inspire the design, preparation and application of high-performance photothermal catalysts, aiming at alleviating non-renewable fossil energy consumption and carbon emissions for early carbon emission peak and carbon neutrality.展开更多
Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have b...Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have been devoted to the development of novel synthesis strategy for the preparation of porous carbon materials in recent years.In particular,molten salt strategy represents an emerging and promising method,whereby it has shown great potential in achieving tailored production of porous carbon.It has been proved that the molten salt-assisted production of carbon via the direct carbonization of carbonaceous precursors is an effective approach.Furthermore,with the incorporation of electrochemical technology,molten salt synthesis of porous carbon has become flexible and diversiform.Here,this review focuses on the mainstream molten salt synthesis strategies for the production of porous carbon materials,which includes direct molten salt carbonization process,capture and electrochemical conversion of CO_(2)to value-added carbon,electrochemical exfoliation of graphite to graphene-based materials,and electrochemical etching of carbides to new-type carbide-derived carbon materials.The reaction mechanisms and recent advances for these strategies are reviewed and discussed systematically.The morphological and structural properties and capacitive performances of the obtained carbon materials are summarized to reveal their appealing points for supercapacitor applications.Moreover,the opportunities and challenges of the molten salt synthesis strategy for the preparation of carbon materials are also discussed in this review to provide inspiration to the future researches.展开更多
Covalent organic frameworks(COFs) are a potential platform for carbon dioxide(CO_(2)) conversion owing to their periodic permanent porosity,adjustable structure,and chemical stability.For good catalytic performance in...Covalent organic frameworks(COFs) are a potential platform for carbon dioxide(CO_(2)) conversion owing to their periodic permanent porosity,adjustable structure,and chemical stability.For good catalytic performance in CO_(2) conversion,collaborative multifunctions should be strategically integrated into the catalytic system design and construction.In this study,a four-in-one high-efficiency catalyst was synthesized and tested for CO_(2) cycloaddition to form cyclic carbonate.The obtained Tp-MPB-BrCOF had a high nitrogen content,which enhanced its CO_(2) affinity through substantial Lewis acid-base or dipole-quadrupole interactions;moreover,the acid(protons transferring from oxygen(–OH) to nitrogen(–NH)),hydrogen bond donor(hydroxyl group),and Br-(nucleophile group) served as three active sites,further improving the catalyst activity.These results provide a basis for designing efficient and stable CO_(2)-conversion catalysts.展开更多
Recently,significant research has been conducted on the conversion of carbon dioxide(CO_(2))into value-added chemicals.With the decreasing cost of clean electricity,electrochemical methods have emerged as potential ap...Recently,significant research has been conducted on the conversion of carbon dioxide(CO_(2))into value-added chemicals.With the decreasing cost of clean electricity,electrochemical methods have emerged as potential approaches for converting and fixing CO_(2).Organic electrochemical synthesis is a promising method for utilizing CO_(2)because it transforms CO_(2)into higher-value chemicals.This review introduces the research aspects of CO_(2)conversion and the mechanisms of CO_(2)organic electrocarboxylation reactions.Recent progress in electrocarboxylation with CO_(2)is discussed,considering organic substrates and cathode types under different reaction mechanisms.Finally,the challenges and prospects in this field are highlighted with the aim of further promoting the fundamental understanding of CO_(2)organic electrocarboxylation.展开更多
The CO_(2)reduction into carbon-contained fuel via solar energy offers the powerful tools to realize the zero-emission carbon cycle.Owing to the intriguing features of the two-dimensional(2D)heterostructures,it is sus...The CO_(2)reduction into carbon-contained fuel via solar energy offers the powerful tools to realize the zero-emission carbon cycle.Owing to the intriguing features of the two-dimensional(2D)heterostructures,it is susceptible to modulate the electronic structure as well as the surface geometry for optimizing the photocatalytic CO_(2)reactivity.From this perspective,we surveyed the fundamental insights of 2D semiconductor heterostructures,involving the fabrication strategies and classification of the 2D semiconductor heterostructure.Also,we have detailly discussed the overview of 2D semiconductor heterostructure for optimizing CO_(2)photocatalytic influenced factors,including the solar energy utilization,photogenerated carriers separation,and redox reaction kinetics.Afterwards,we showed the significant advantages of 2D heterostructures in elevating CO_(2)photoreduction performance,focusing on activity,selectivity and photostability.By analyzing the limitations and developments,we ended by putting forward insights into the further researches about the CO_(2)photocatalysts and reactor design,even industrial applications.展开更多
The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clos...The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clostridium ljungdahlii(ClFDH)adsorbed on electrodes displays clear characteristic voltammetric signals that can be assigned to the reduction and oxidation potential of the[4Fe-4S]^(2+/+)cluster under nonturnover conditions.Upon adding substrates,the signals transform into a specific redox center that engages in catalytic electron transport.ClFDH catalyzes rapid and efficient reversible interconversion between CO_(2) and formate in the presence of substrates.The turnover frequency of electrochemical CO_(2) reduction is determined as 1210 s^(-1) at 25℃ and pH 7.0,which can be further enhanced up to 1786 s^(-1) at 50℃.The Faradaic efficiency at−0.6 V(vs.standard hydrogen electrode)is recorded as 99.3%in a 2-h reaction.Inhibition experiments and theoretical modeling disclose interesting pathways for CO_(2) entry,formate exit,and OCN−competition,suggesting an oxidation-state-dependent binding mechanism of catalysis.Our results provide a different perspective for understanding the catalytic mechanism of FDH and original insights into the design of synthetic catalysts.展开更多
Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect...Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.展开更多
Carbon-supported noble-metal-free single-atom catalysts(SACs)have aroused widespread interest due to their green chemistry aspects and excellent performances.Herein,we propose a“ligand regulation strategy”and achiev...Carbon-supported noble-metal-free single-atom catalysts(SACs)have aroused widespread interest due to their green chemistry aspects and excellent performances.Herein,we propose a“ligand regulation strategy”and achieve the successful fabrication of bifunctional SAC/MOF(MOF=metal-organic framework)nanocomposite(abbreviated NiSA/ZIF-300;ZIF=ZIF-8)with exceptional catalytic performance and robustness.The designed NiSA/ZIF-300 has a planar interfacial structure with the Ni atom,involving one S and three N atoms bonded to Ni(Ⅱ),fabricated by controllable pyrolysis of volatile Ni-S fragments.For CO_(2) cycloaddition to styrene epoxide,NiSA/ZIF-300 exhibits ultrahigh activity(turnover number(TON)=1.18×105;turnover frequency(TOF)=9830 molSC·mol_(Ni)^(-1)·h^(-1);SC=styrene carbonate)and durability at 70℃ under 1 atm CO_(2) pressure,which is much superior to Ni complex/ZIF,NiNP/ZIF-300,and most reported catalysts.This study offers a simple method of bifunctional SAC/MOF nanocomposite fabrication and usage,and provides guidance for the precise design of additional original SACs with unique catalytic properties.展开更多
基金Financial supports for this research was provided by the National Nature Science Foundation of China(Grant 40073026)Ministry of Science and Technology of China(Grant 164)+1 种基金Natural Science Foundation of Guangxi(Grant 9824021)Ministry of Land and Resources of China(Grant 9806)and Bremen University of Germany.
文摘The conversion of CO2 into H+ and is a relatively slow reaction. Hence, its kinetics may be rate determining in carbonate rock dissolution. Carbonic anhydrase (CA), which is widespread in nature, was used to catalyze the CO2 conversion process in dissolution experiments of limestone and dolomite. It was found that the rate of dissolution increases by a factor of about 10 after the addition of CA at a high CO2 partial pressure (Pco2) for limestone and about 3 at low Pco2 for dolomite. This shows that reappraisal is necessary for the importance of chemical weathering (including carbonate rock dissolution and silicate weathering) in the atmospheric CO2 sink and the mysterious missing sink in carbon cycling. It is doubtless that previous studies of weathering underestimated weathering rates due to the ignorance of CA as an activator in weathering, thus the contribution of weathering to the atmospheric CO2 sink is also underestimated. This finding also shows the need to examine the situ distribution and activity of CA in different waters and to investigate the role of CA in weathering.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金financially supported by the National Natural Science Foundation of China(No.51907193 and No.51677182)the Dalian National Laboratory(DNL)for Clean Energy Cooperation Fund,CAS(No.DNL201915 and No.DNL201912)+2 种基金the Beijing Municipal Science and Technology Commission(No.Z181100000118006)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020000022)。
文摘The burgeoning global economy during the past decades gives rise to the continuous increase in fossil fuels consumption and rapid growth of CO_(2) emission,which demands an urgent exploration into green and sustainable devices for energy storage and power management.Supercapacitors based on activated carbon electrodes are promising systems for highly efficient energy harvesting and power supply,but their promotion is hindered by the moderate energy density compared with batteries.Therefore,scalable conversion of CO_(2) into novel carbon nanostructures offers a powerful alternative to tackle both issues:mitigating the greenhouse effect caused by redundant atmospheric CO_(2) and providing carbon materials with enhanced electrochemical performances.In this tutorial review,the techniques,opportunities and barriers in the design and fabrication of advanced carbon materials using CO_(2) as feedstock as well as their impact on the energy-storage performances of supercapacitors are critically examined.In particular,the chemical aspects of various Cv2 conversion reactions are highlighted to establish a detailed understanding for the science and technology involved in the microstructural evolution,surface engineering and porosity control of CO_(2)-converted carbon nanostructures.Finally,the prospects and challenges associated with the industrialization of CO_(2) conversion and their practical application in supercapacitors are also discussed.
基金National Key Research and Development Program of China,Grant/Award Number:2018YFA0901300National Natural Science Foundation of China,Grant/Award Numbers:21975124,52173173,21603209+1 种基金the Natural Science Foundation of Jiangsu Province,Grant/Award Numbers:BK20220051,BK20220002Jiangsu Province Carbon Peak and Neutrality Innovation Program,Grant/Award Numbers:BE2022002-3,BE2022031-4。
文摘Upgrading of atmospheric CO_(2) into high-value-added acetate using renewable electricity via electrocatalysis solely remains a great challenge.Here,inspired by microbial synthesis via biocatalysts,we present a coupled system to produce acetate from CO_(2) by bridging inorganic electrocatalysis with microbial synthesis through formate intermediates.A 3D Bi_(2)O_(3)@CF integrated electrode with an ice-sugar gourd shape was fabricated via a straightforward hydrothermal synthesis strategy,wherein Bi_(2)O_(3) microspheres were decorated on carbon fibers.This ice-sugar gourd-shaped architecture endows electrodes with multiple structural advantages,including synergistic contribution,high mass transport capability,high structural stability,and large surface area.Consequently,the resultant Bi_(2)O_(3)@CF exhibited a maximum Faradic efficiency of 92.4%at−1.23 V versus Ag/AgCl for formate generation in 0.5 M KHCO_(3),exceeding that of Bi_(2)O_(3)/CF prepared using a conventional electrode preparation strategy.Benefiting from the high formate selectivity,unique architecture,and good biocompatibility,the Bi_(2)O_(3)@CF electrode attached with enriched CO_(2)-fixing electroautotrophs served as a biocathode.As a result,a considerable acetate yield rate of 0.269±0.009 g L^(−1) day^(−1)(a total acetate yield of 3.77±0.12 g L^(−1) during 14-day operation)was achieved in the electrochemical–microbial system equipped with Bi_(2)O_(3)@CF.
基金supported by Shandong Provincial Natural Science Foundation (No. ZR2019BB025)。
文摘The conversion of carbon dioxide into useful fuels or chemical feedstocks is of great importance for achieving carbon emission peak and carbon neutrality. The harvesting and conversion of solar energy will provide a sustainable and environmentally friendly energy source for human production and living.Very recently, photothermal catalysis has been proved to exhibit great advantages in reducing the reaction temperature, promoting the catalytic activity, and manipulating the reaction pathway in comparison with traditional thermal catalysis. In this review, we firstly introduced the fundamental mechanisms and categories of photothermal catalysis to understand the synergy or the difference between photochemical and thermochemical reaction pathways. Subsequently, the criteria and strategies for photothermal catalyst design are discussed in order to inspire the development of high-efficiency photothermal catalytic route by achieving intense absorption of broadband solar energy spectrum and high conversion capability of solar-to-heat. Recent progress in CO_(2)reduction achieved by photothermal catalysis was summarized in terms of production types. In the end, the future challenges and perspectives of photothermal catalytic CO_(2)reduction are presented. We hope that this review will not only deepen the understanding of photothermal catalysis, but also inspire the design, preparation and application of high-performance photothermal catalysts, aiming at alleviating non-renewable fossil energy consumption and carbon emissions for early carbon emission peak and carbon neutrality.
基金financially supported by the National Natural Science Foundation of China(Nos.5202205451974181+4 种基金5200415)the Shanghai Rising-Star Program(19QA1403600)the Iron and Steel Joint Research Found of National Natural Science Foundation and China Baowu Steel Group Corporation Limited(U1860203)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(TP2019041)the CAS Interdisciplinary Innovation Team for financial support。
文摘Carbon materials have taken an important role in supercapacitor applications due to their outstanding features of large surface area,low price,and stable physicochemical properties.Considerable research efforts have been devoted to the development of novel synthesis strategy for the preparation of porous carbon materials in recent years.In particular,molten salt strategy represents an emerging and promising method,whereby it has shown great potential in achieving tailored production of porous carbon.It has been proved that the molten salt-assisted production of carbon via the direct carbonization of carbonaceous precursors is an effective approach.Furthermore,with the incorporation of electrochemical technology,molten salt synthesis of porous carbon has become flexible and diversiform.Here,this review focuses on the mainstream molten salt synthesis strategies for the production of porous carbon materials,which includes direct molten salt carbonization process,capture and electrochemical conversion of CO_(2)to value-added carbon,electrochemical exfoliation of graphite to graphene-based materials,and electrochemical etching of carbides to new-type carbide-derived carbon materials.The reaction mechanisms and recent advances for these strategies are reviewed and discussed systematically.The morphological and structural properties and capacitive performances of the obtained carbon materials are summarized to reveal their appealing points for supercapacitor applications.Moreover,the opportunities and challenges of the molten salt synthesis strategy for the preparation of carbon materials are also discussed in this review to provide inspiration to the future researches.
基金supported by the National Natural Science Foundation of China (21805173,52273208)Shanxi Agricultural University (SXBYKY2022078,2021BQ120)+1 种基金Shanxi Scholarship Council of China (2022-004)the Natural Science Foundation of Shanxi Province (202203021211289)。
文摘Covalent organic frameworks(COFs) are a potential platform for carbon dioxide(CO_(2)) conversion owing to their periodic permanent porosity,adjustable structure,and chemical stability.For good catalytic performance in CO_(2) conversion,collaborative multifunctions should be strategically integrated into the catalytic system design and construction.In this study,a four-in-one high-efficiency catalyst was synthesized and tested for CO_(2) cycloaddition to form cyclic carbonate.The obtained Tp-MPB-BrCOF had a high nitrogen content,which enhanced its CO_(2) affinity through substantial Lewis acid-base or dipole-quadrupole interactions;moreover,the acid(protons transferring from oxygen(–OH) to nitrogen(–NH)),hydrogen bond donor(hydroxyl group),and Br-(nucleophile group) served as three active sites,further improving the catalyst activity.These results provide a basis for designing efficient and stable CO_(2)-conversion catalysts.
基金supported by the National Natural Science Foundation of China(22379054)and start-up funding from Jiangnan University.
文摘Recently,significant research has been conducted on the conversion of carbon dioxide(CO_(2))into value-added chemicals.With the decreasing cost of clean electricity,electrochemical methods have emerged as potential approaches for converting and fixing CO_(2).Organic electrochemical synthesis is a promising method for utilizing CO_(2)because it transforms CO_(2)into higher-value chemicals.This review introduces the research aspects of CO_(2)conversion and the mechanisms of CO_(2)organic electrocarboxylation reactions.Recent progress in electrocarboxylation with CO_(2)is discussed,considering organic substrates and cathode types under different reaction mechanisms.Finally,the challenges and prospects in this field are highlighted with the aim of further promoting the fundamental understanding of CO_(2)organic electrocarboxylation.
基金financially supported by the National Key R&D Program of China(2019YFA0210004,2022YFA1502904,2022YFA1203600)National Natural Science Foundation of China(22125503,52394201,22321001,U2032212)。
文摘The CO_(2)reduction into carbon-contained fuel via solar energy offers the powerful tools to realize the zero-emission carbon cycle.Owing to the intriguing features of the two-dimensional(2D)heterostructures,it is susceptible to modulate the electronic structure as well as the surface geometry for optimizing the photocatalytic CO_(2)reactivity.From this perspective,we surveyed the fundamental insights of 2D semiconductor heterostructures,involving the fabrication strategies and classification of the 2D semiconductor heterostructure.Also,we have detailly discussed the overview of 2D semiconductor heterostructure for optimizing CO_(2)photocatalytic influenced factors,including the solar energy utilization,photogenerated carriers separation,and redox reaction kinetics.Afterwards,we showed the significant advantages of 2D heterostructures in elevating CO_(2)photoreduction performance,focusing on activity,selectivity and photostability.By analyzing the limitations and developments,we ended by putting forward insights into the further researches about the CO_(2)photocatalysts and reactor design,even industrial applications.
基金support from the National Key Research and Development Program of China (No.2020YFA0907300)the National Natural Science Foundation of China (No.22077069)+1 种基金the Natural Science Foundation of Tianjin (19JCZDJC33400)the Fundamental Research Funds for the Central Universities,Nankai University (63201111).
文摘The conversion of CO_(2) into fuels and valuable chemicals is one of the central topics to combat climate change and meet the growing demand for renewable energy.Herein,we show that the formate dehydrogenase from Clostridium ljungdahlii(ClFDH)adsorbed on electrodes displays clear characteristic voltammetric signals that can be assigned to the reduction and oxidation potential of the[4Fe-4S]^(2+/+)cluster under nonturnover conditions.Upon adding substrates,the signals transform into a specific redox center that engages in catalytic electron transport.ClFDH catalyzes rapid and efficient reversible interconversion between CO_(2) and formate in the presence of substrates.The turnover frequency of electrochemical CO_(2) reduction is determined as 1210 s^(-1) at 25℃ and pH 7.0,which can be further enhanced up to 1786 s^(-1) at 50℃.The Faradaic efficiency at−0.6 V(vs.standard hydrogen electrode)is recorded as 99.3%in a 2-h reaction.Inhibition experiments and theoretical modeling disclose interesting pathways for CO_(2) entry,formate exit,and OCN−competition,suggesting an oxidation-state-dependent binding mechanism of catalysis.Our results provide a different perspective for understanding the catalytic mechanism of FDH and original insights into the design of synthetic catalysts.
基金supported by Russian Science Foundation (No.#21-73-10235)
文摘Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.
基金support by the National Natural Science Foundation of China(Nos.21972001,21871001)the Natural Science Foundation of Anhui Province(No.2008085MB37)the Anhui University,the University of Bordeaux,and the Centre National de la Recherche Scientifique(CNRS).
文摘Carbon-supported noble-metal-free single-atom catalysts(SACs)have aroused widespread interest due to their green chemistry aspects and excellent performances.Herein,we propose a“ligand regulation strategy”and achieve the successful fabrication of bifunctional SAC/MOF(MOF=metal-organic framework)nanocomposite(abbreviated NiSA/ZIF-300;ZIF=ZIF-8)with exceptional catalytic performance and robustness.The designed NiSA/ZIF-300 has a planar interfacial structure with the Ni atom,involving one S and three N atoms bonded to Ni(Ⅱ),fabricated by controllable pyrolysis of volatile Ni-S fragments.For CO_(2) cycloaddition to styrene epoxide,NiSA/ZIF-300 exhibits ultrahigh activity(turnover number(TON)=1.18×105;turnover frequency(TOF)=9830 molSC·mol_(Ni)^(-1)·h^(-1);SC=styrene carbonate)and durability at 70℃ under 1 atm CO_(2) pressure,which is much superior to Ni complex/ZIF,NiNP/ZIF-300,and most reported catalysts.This study offers a simple method of bifunctional SAC/MOF nanocomposite fabrication and usage,and provides guidance for the precise design of additional original SACs with unique catalytic properties.