CO_(2)reduction under simulated sunlight over photocatalysts has become an attractive researcher area recently.In this work,carbon nitride compounds modified by TiO_(2)nanoparticles(TNPs)have been used for the photore...CO_(2)reduction under simulated sunlight over photocatalysts has become an attractive researcher area recently.In this work,carbon nitride compounds modified by TiO_(2)nanoparticles(TNPs)have been used for the photoreduction of CO_(2)in the presence of CH_(4)at room temperature.Briefly,a series of noble-metal-free TNP-graphitic-carbon nitride(g-C_(3)N_(4),also abbreviated CN)photocatalysts with different TNPs loadings and calcination temperatures have been synthesized by a wet-chemical method.The characterization results of XRD,FTIR,SEM,TEM,BET,XPS,CO_(2)Adsorption,UV-vis,and PL demonstrate that the BET surface area and CO_(2)adsorption capacity have been improved after the calcination.Besides,the g-C_(3)N_(4)has been successfully coupled with the TNPs and a heterojunction has formed at their interface.These characters contribute to increase the photocatalytic activity of TNPs-CN toward reducing CO_(2)in the presence of CH_(4),and its'performance is better than bare g-C_(3)N_(4),Titania(P_(25))-CN,MgO-CN,or Cu_(2)O-CN.Orthogonal experiments are then carried out to investigate the sensitivity factors and optimum conditions.The sensitivity results show that the reaction pressure makes little difference on the photocatalysis results,which verifies the photoinduced CO_(2)-CH_(4)reaction has a tiny change in gas volume.In addition,under the optimum conditions,the turnover frequency(TOF)of CO after 4 h reaction can reach 9.98μmol g-cat.^(-1)h^(-1),and traces of ethane and ethylene have been detected during the reactions.In addition,surface acetate and carbonaceous deposit are found on the(20)TNPs-CN/450 surface after continuous 24 h irradiation under the optimum conditions,which resulting in the inactivation of the catalyst.Finally,possible reaction mechanisms have been proposed based on the results.展开更多
基金financial support from the National Natural Science Foundation of China(21536003,21938002 and 21776065)Natural Science Foundation of Hunan Province in China(2019JJ20006)。
文摘CO_(2)reduction under simulated sunlight over photocatalysts has become an attractive researcher area recently.In this work,carbon nitride compounds modified by TiO_(2)nanoparticles(TNPs)have been used for the photoreduction of CO_(2)in the presence of CH_(4)at room temperature.Briefly,a series of noble-metal-free TNP-graphitic-carbon nitride(g-C_(3)N_(4),also abbreviated CN)photocatalysts with different TNPs loadings and calcination temperatures have been synthesized by a wet-chemical method.The characterization results of XRD,FTIR,SEM,TEM,BET,XPS,CO_(2)Adsorption,UV-vis,and PL demonstrate that the BET surface area and CO_(2)adsorption capacity have been improved after the calcination.Besides,the g-C_(3)N_(4)has been successfully coupled with the TNPs and a heterojunction has formed at their interface.These characters contribute to increase the photocatalytic activity of TNPs-CN toward reducing CO_(2)in the presence of CH_(4),and its'performance is better than bare g-C_(3)N_(4),Titania(P_(25))-CN,MgO-CN,or Cu_(2)O-CN.Orthogonal experiments are then carried out to investigate the sensitivity factors and optimum conditions.The sensitivity results show that the reaction pressure makes little difference on the photocatalysis results,which verifies the photoinduced CO_(2)-CH_(4)reaction has a tiny change in gas volume.In addition,under the optimum conditions,the turnover frequency(TOF)of CO after 4 h reaction can reach 9.98μmol g-cat.^(-1)h^(-1),and traces of ethane and ethylene have been detected during the reactions.In addition,surface acetate and carbonaceous deposit are found on the(20)TNPs-CN/450 surface after continuous 24 h irradiation under the optimum conditions,which resulting in the inactivation of the catalyst.Finally,possible reaction mechanisms have been proposed based on the results.