Waste resource utilization of petroleum coke is crucial for achieving global carbon emission reduction.Herein,a series of N-doped microporous carbons were fabricated from petroleum coke using a one-pot synthesis metho...Waste resource utilization of petroleum coke is crucial for achieving global carbon emission reduction.Herein,a series of N-doped microporous carbons were fabricated from petroleum coke using a one-pot synthesis method.The as-prepared samples had a large specific surface area(up to 2512 m^(2)/g),a moderate-high N content(up to 4.82 at.%),and high population(55%)of ultra-micropores(<0.7 nm).Regulating the N content and ultra-microporosity led to efficient CO_(2)adsorption and separation.At ambient pressure,the optimal N-doped petroleum coke-based microporous carbon exhibited the highest CO_(2)uptake of 4.25 mmol/g at 25℃ and 6.57 mmol/g at 0℃.These values are comparable or even better than those of numerous previously reported adsorbents prepared by multistep synthesis,primarily due to the existence of ultra-micropores.The sample exhibited excellent CO_(2)/N_(2)selectivity at 25℃ owing to the abundant basic pyridinic and pyrrolic N species;and showed superior CO_(2)adsorption-desorption cycling performance,which was maintained at 97% after 10 cycles at 25℃.Moreover,petroleum coke-based microporous carbon,with a considerably high specific surface area and hierarchical pore structure,exhibited excellent electrochemical performance over the N-doped sample,maintaining a favorable specific capacitance of 233.25F/g at 0.5 A/g in 6 mol/L KOH aqueous electrolyte.This study provides insight into the influence of N-doping on the porous properties of petroleum coke-based carbon.Furthermore,the as-prepared carbons were found to be promising adsorbents for CO_(2)adsorption,CO_(2)/N_(2)separation and electrochemical application.展开更多
基金supported by the Science and Technology Program of Guangzhou,China(No.202002020020)the National Natural Science Foundation of China(Nos.51808227,51878292)the Fundamental Research Funds for the Central Universities(No.2020ZYGXZR015)。
文摘Waste resource utilization of petroleum coke is crucial for achieving global carbon emission reduction.Herein,a series of N-doped microporous carbons were fabricated from petroleum coke using a one-pot synthesis method.The as-prepared samples had a large specific surface area(up to 2512 m^(2)/g),a moderate-high N content(up to 4.82 at.%),and high population(55%)of ultra-micropores(<0.7 nm).Regulating the N content and ultra-microporosity led to efficient CO_(2)adsorption and separation.At ambient pressure,the optimal N-doped petroleum coke-based microporous carbon exhibited the highest CO_(2)uptake of 4.25 mmol/g at 25℃ and 6.57 mmol/g at 0℃.These values are comparable or even better than those of numerous previously reported adsorbents prepared by multistep synthesis,primarily due to the existence of ultra-micropores.The sample exhibited excellent CO_(2)/N_(2)selectivity at 25℃ owing to the abundant basic pyridinic and pyrrolic N species;and showed superior CO_(2)adsorption-desorption cycling performance,which was maintained at 97% after 10 cycles at 25℃.Moreover,petroleum coke-based microporous carbon,with a considerably high specific surface area and hierarchical pore structure,exhibited excellent electrochemical performance over the N-doped sample,maintaining a favorable specific capacitance of 233.25F/g at 0.5 A/g in 6 mol/L KOH aqueous electrolyte.This study provides insight into the influence of N-doping on the porous properties of petroleum coke-based carbon.Furthermore,the as-prepared carbons were found to be promising adsorbents for CO_(2)adsorption,CO_(2)/N_(2)separation and electrochemical application.