Using the global navigation satellite system(GNSS) and radio occultation(RO) refractivity data from the Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) mission from January 2020 to De...Using the global navigation satellite system(GNSS) and radio occultation(RO) refractivity data from the Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) mission from January 2020 to December 2021, the spatial and temporal variability of Marine Boundary Layer Heights(MBLHs) over the tropical and subtropical oceans are investigated. The MBLH detection method is based on the wavelet covariance transform(WCT)algorithm, while the distinctness(DT) parameter, which reflects the significance of the maximum WCT function values, is introduced. For the refractivity profiles with indistinct maximum WCT function values, the available surrounding ROderived MBLHs are used as auxiliary information, which helps to improve the objectiveness of the inversion process. The RO-derived MBLHs are validated with the MBLHs derived from the collocated high-vertical-resolution radiosonde observations, and the seasonal distributions of the RO-derived MBLHs are presented. Further comparisons of the magnitudes and the distributions of the RO-derived MBLHs with those derived from two model datasets, the European Centre for Medium-Range Weather Forecasts(ECMWF) analyses and the National Centers for Environmental Prediction(NCEP) Aviation(AVN) 12-hour forecast data, reveal that although high correlations exist between the RO-derived and the model-derived MBLHs, the model-derived ones are generally lower than the RO-derived ones in most parts of the tropics and sub-tropic ocean areas during different seasons, which should be partially attributed to the limited vertical resolutions of the model datasets. The correlation analyses between the MBLHs and near-surface wind speeds demonstrate that over the Pacific Ocean, near-surface wind speed is an important factor that influences the variations of the MBLHs.展开更多
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O...We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.展开更多
A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cos...A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.展开更多
利用2006—2020年中国区域的COSMIC-1/2(constellation observing system for meteorology ionosphere and climate-1/2)IonPrf产品数据,分析了中国区域电离层时空变化特征。首先介绍新一代COSMIC-2在中国以及全球区域的数据质量状况;...利用2006—2020年中国区域的COSMIC-1/2(constellation observing system for meteorology ionosphere and climate-1/2)IonPrf产品数据,分析了中国区域电离层时空变化特征。首先介绍新一代COSMIC-2在中国以及全球区域的数据质量状况;然后对IonPrf产品的数据质量控制和电离层特征参数提取方法进行说明;最后,以不同时间尺度统计分析了中国区域近15年电离层特征参数在一个完整太阳活动周期不同活动水平下的时空变化特征。统计结果表明,中国区域电离层变化具有与太阳活动相关的周年变化、季节变化和日变化特征;周年变化中具有明显空间分布特征,以30°N左右为界,中国南方地区峰值密度NmF2、峰值高度HmF2和电子总含量(total electron content,TEC)年均值普遍高于北方地区;在月份季节变化中,NmF2和TEC最大值一般出现在3月、10月,最小值出现在6月、7月,仅中国南方部分地区存在冬季异常现象,且春、夏季的HmF2均值大于秋、冬季;在日变化中,NmF2和TEC的最大值主要出现在地方时(local time,LT)12:00—16:00,且峰值对应的地方时随纬度升高而向前推移。当太阳活动高年时,日落后NmF2和TEC仍保持较高水平。HmF2在中国南方地区最大值出现在LT 12:00—16:00,最小值出现在LT 05:00—07:00,北方地区HmF2的值白天普遍低于夜间。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 42174017, 42074027, 41774033, and 41774032)。
文摘Using the global navigation satellite system(GNSS) and radio occultation(RO) refractivity data from the Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) mission from January 2020 to December 2021, the spatial and temporal variability of Marine Boundary Layer Heights(MBLHs) over the tropical and subtropical oceans are investigated. The MBLH detection method is based on the wavelet covariance transform(WCT)algorithm, while the distinctness(DT) parameter, which reflects the significance of the maximum WCT function values, is introduced. For the refractivity profiles with indistinct maximum WCT function values, the available surrounding ROderived MBLHs are used as auxiliary information, which helps to improve the objectiveness of the inversion process. The RO-derived MBLHs are validated with the MBLHs derived from the collocated high-vertical-resolution radiosonde observations, and the seasonal distributions of the RO-derived MBLHs are presented. Further comparisons of the magnitudes and the distributions of the RO-derived MBLHs with those derived from two model datasets, the European Centre for Medium-Range Weather Forecasts(ECMWF) analyses and the National Centers for Environmental Prediction(NCEP) Aviation(AVN) 12-hour forecast data, reveal that although high correlations exist between the RO-derived and the model-derived MBLHs, the model-derived ones are generally lower than the RO-derived ones in most parts of the tropics and sub-tropic ocean areas during different seasons, which should be partially attributed to the limited vertical resolutions of the model datasets. The correlation analyses between the MBLHs and near-surface wind speeds demonstrate that over the Pacific Ocean, near-surface wind speed is an important factor that influences the variations of the MBLHs.
基金the National Natural Science Foundation of China(Grant Nos.41831073,42174196,and 42374205)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(CAS+4 种基金Grant No.YSBR-018)the Informatization Plan of CAS(Grant No.CAS-WX2021PY-0101)the Youth Cross Team Scientific Research project of the Chinese Academy of Sciences(Grant No.JCTD-2021-10)the Open Research Project of Large Research Infrastructures of CAS titled“Study on the Interaction Between Low-/Mid-Latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project.”This work was also supported in part by the Specialized Research Fund and the Open Research Program of the State Key Laboratory of Space Weather.
文摘We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S.
文摘A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.
文摘多源数据同化是实现电离层天气现报和预报的重要途径.选择参数化电离层模型作为背景模型,基于地基全球卫星导航系统(Global Navigation Satellite System,GNSS)观测以及第二代气象/电离层气候卫星探测系统(Constellation Observing System for Meteorology Ionosphere and Climate 2,COSMIC 2)掩星测量,利用经验电离层模型NeQuick计算得到多源观测数据,结合水平和垂直方向分离的高斯型协方差矩阵及卡尔曼滤波方法实现了中国区域电离层多源数据同化反演.同化结果表明,多源数据同化方法能将观测资料有效地同化到背景模式中从而获得较好的同化结果.与背景模式相比,同化后得到的电离层总电子含量及电子密度误差均显著下降.
文摘利用2006—2020年中国区域的COSMIC-1/2(constellation observing system for meteorology ionosphere and climate-1/2)IonPrf产品数据,分析了中国区域电离层时空变化特征。首先介绍新一代COSMIC-2在中国以及全球区域的数据质量状况;然后对IonPrf产品的数据质量控制和电离层特征参数提取方法进行说明;最后,以不同时间尺度统计分析了中国区域近15年电离层特征参数在一个完整太阳活动周期不同活动水平下的时空变化特征。统计结果表明,中国区域电离层变化具有与太阳活动相关的周年变化、季节变化和日变化特征;周年变化中具有明显空间分布特征,以30°N左右为界,中国南方地区峰值密度NmF2、峰值高度HmF2和电子总含量(total electron content,TEC)年均值普遍高于北方地区;在月份季节变化中,NmF2和TEC最大值一般出现在3月、10月,最小值出现在6月、7月,仅中国南方部分地区存在冬季异常现象,且春、夏季的HmF2均值大于秋、冬季;在日变化中,NmF2和TEC的最大值主要出现在地方时(local time,LT)12:00—16:00,且峰值对应的地方时随纬度升高而向前推移。当太阳活动高年时,日落后NmF2和TEC仍保持较高水平。HmF2在中国南方地区最大值出现在LT 12:00—16:00,最小值出现在LT 05:00—07:00,北方地区HmF2的值白天普遍低于夜间。