A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL...A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest effi-ciency of 0.301 lm/W at 6.2 V.The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%.The results are quite promising and promise that as its analogs of fluorene and silafluorene,germafluorene is an excellent building block for blue light-emitting polymers and host materials.展开更多
In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively ...In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.展开更多
To design high efficiency polymer solar cells(PSCs), it is of great importance to develop suitable polymer donors that work well with the low bandgap acceptors, providing complementary absorption, forming interpenetra...To design high efficiency polymer solar cells(PSCs), it is of great importance to develop suitable polymer donors that work well with the low bandgap acceptors, providing complementary absorption, forming interpenetrating networks in the active layers and minimizing energy loss. Recently, we developed a series of two-dimension-conjugated polymers based on bithienylbenzodithiophene-alt-benzotriazole backbone bearing different conjugated side chains, generally called J-series polymers. They are medium energy bandgap(Eg) polymers(Eg of ca. 1.80 eV)with strong absorptions in the range of 400-650 nm, and exhibit ordered crystalline structures, high hole mobilities, and more interestingly,tunable energy levels depending on the structure variations. In this feature article, we highlight our recent efforts on the design and synthesis of those J-series polymer donors, including an introduction on the polymer design strategy and emphasis on the crucial function of differential conjugated side chain. Finally, the future opportunities and challenges of the J-series polymers in PSCs are discussed.展开更多
A facile synthetic route for conjugated polymer PPESO3 was proposed,through which not only the procedure was simplified,but also the dealkylation by BBr3 was avoided,and therefore,the preparing difficulty and danger w...A facile synthetic route for conjugated polymer PPESO3 was proposed,through which not only the procedure was simplified,but also the dealkylation by BBr3 was avoided,and therefore,the preparing difficulty and danger were greatly reduced,which was obviously beneficial to the preparation and application of(PPESO3).At the same time,the interactions between(PPESO3) and nonionic surfactant(PVP) were investigated.The results indicate that the aggregation of polymer backbone was effectively broken up and the steady complexes consisted of PPESO3 and PVP were formed which would contribute to the preparation of highly sensitive bio-sensors due to the affinity of PVP to biological macromolecules.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos.60325412, 90406021,and 50428303)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NUPT) (Grant No. NY206073)
文摘A germafluorene-fluorene copolymer was successfully obtained via Suzuki polymerization.The ger-manium containing copolymer has an efficient blue light emission under the ultraviolet irradiation and its single layer EL device showed the highest brightness of 2630 cd/m2 at 7.8 V and the highest effi-ciency of 0.301 lm/W at 6.2 V.The copolymer can also serve as the host material for phosphorescent metal complexes with the maximum brightness of 15600 cd/m2 and the quantum efficiency of 8.5%.The results are quite promising and promise that as its analogs of fluorene and silafluorene,germafluorene is an excellent building block for blue light-emitting polymers and host materials.
基金supported by the National Basic Research Program of China(2014CB643501)the National Natural Science Foundation of China(91433117,91333204 and 21374124)
文摘In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.
基金financially supported by the National Natural Science Foundation of China(Nos.51722308,51673200,21734008,and 51820105003)Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302007)Fundamental Research Funds for the Central Universities(No.Buctrc201822,XK1802-2)。
文摘To design high efficiency polymer solar cells(PSCs), it is of great importance to develop suitable polymer donors that work well with the low bandgap acceptors, providing complementary absorption, forming interpenetrating networks in the active layers and minimizing energy loss. Recently, we developed a series of two-dimension-conjugated polymers based on bithienylbenzodithiophene-alt-benzotriazole backbone bearing different conjugated side chains, generally called J-series polymers. They are medium energy bandgap(Eg) polymers(Eg of ca. 1.80 eV)with strong absorptions in the range of 400-650 nm, and exhibit ordered crystalline structures, high hole mobilities, and more interestingly,tunable energy levels depending on the structure variations. In this feature article, we highlight our recent efforts on the design and synthesis of those J-series polymer donors, including an introduction on the polymer design strategy and emphasis on the crucial function of differential conjugated side chain. Finally, the future opportunities and challenges of the J-series polymers in PSCs are discussed.
文摘A facile synthetic route for conjugated polymer PPESO3 was proposed,through which not only the procedure was simplified,but also the dealkylation by BBr3 was avoided,and therefore,the preparing difficulty and danger were greatly reduced,which was obviously beneficial to the preparation and application of(PPESO3).At the same time,the interactions between(PPESO3) and nonionic surfactant(PVP) were investigated.The results indicate that the aggregation of polymer backbone was effectively broken up and the steady complexes consisted of PPESO3 and PVP were formed which would contribute to the preparation of highly sensitive bio-sensors due to the affinity of PVP to biological macromolecules.