MAPK(促分裂原活化蛋白激酶,Mitogen-Activated Protein Kinase)信号转导途径在植物病原真菌的生长发育、有性生殖和致病性调节等方面占有重要作用,是一种普遍存在的细胞外信号转导途径。在真核生物MAPK蛋白的同源性和2种炭疽菌(禾谷炭...MAPK(促分裂原活化蛋白激酶,Mitogen-Activated Protein Kinase)信号转导途径在植物病原真菌的生长发育、有性生殖和致病性调节等方面占有重要作用,是一种普遍存在的细胞外信号转导途径。在真核生物MAPK蛋白的同源性和2种炭疽菌(禾谷炭疽、希金斯炭疽菌)全基因组数据库的基础上,结合Blastp、蛋白质结构域分析和聚类分析3种方法,从禾谷炭疽菌和希金斯炭疽菌基因组数据库中找出18个与酿酒酵母菌同源的3类MAPK级联信号途径基因,并绘制出这2种炭疽菌MAPK级联信号途径简图,为深入研究炭疽菌MAPK级联信号途径基因生物学功能及其相关信号网络特点奠定基础。展开更多
Strawberry anthracnose, caused by Colletotrichum spp., is a major disease of cultivated strawberry. This study identifies 31 isolates of Colletotrichum spp. which cause strawberry anthracnose in Zhejiang Province and ...Strawberry anthracnose, caused by Colletotrichum spp., is a major disease of cultivated strawberry. This study identifies 31 isolates of Colletotrichum spp. which cause strawberry anthracnose in Zhejiang Province and Shanghai City, China. Eleven isolates were identified as C. acutatum, 10 as C. gloeosporioides and 10 as C. fragariae based on morphological characteristics, phylogenetic and sequence analyses. Species-specific polymerase chain reaction (PCR) and enzyme digestion further confirmed the identification of the Colletotrichum spp., demonstrating that these three species are currently the causal agents of strawberry anthracnose in the studied regions. Based on analysis of rDNA internal transcribed spacers (ITS) sequences, sequences of all C. acutatum were identical, and little genetic variability was observed between C. fragariae and C. gloeosporioides. However, the conservative nature of the Mvnl specific site from isolates of C. gloeosporioides was confirmed, and this site could be used to differentiate C. gloeosporioides from C. fragariae.展开更多
The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (la...The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.展开更多
The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution. Carbendazim has been widely used to control anthracnose caused by the C. gloeospo...The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution. Carbendazim has been widely used to control anthracnose caused by the C. gloeosporioides complex in China for more than 30 years and resistance to carbendazim has been reported in China. A total of 125 Colletotrichum isolates of strawberry and yam were collected from different geographical regions in Hubei Province, China. Approximately 52.8% of Colletotrichum spp. isolates showed resistance to carbendazim. The isolates tested in this study belong to four species, and the frequencies of resistant isolates differed across Colletotrichum species. Resistant isolates were found in C. siamense and C. fructicola. In contrast, all isolates of C. gloeosporioides and C. aenigma were sensitive to carbendazim. Highly carbendazim-resistant isolates harbored the E198A mutation in the β-tubulin 2 (TUB2) gene, whereas moderately carbendazim-resistant isolates harbored the F200Y mutation in the TUB2 gene. Carbendazim-sensitive Colletotrichum isolates in this study were not genetically similar enough to form a separate cluster from resistant isolates. The result of this study emphasizes the importance of knowing which Colletotrichum sp. is present, when strategies for disease control are made.展开更多
文摘MAPK(促分裂原活化蛋白激酶,Mitogen-Activated Protein Kinase)信号转导途径在植物病原真菌的生长发育、有性生殖和致病性调节等方面占有重要作用,是一种普遍存在的细胞外信号转导途径。在真核生物MAPK蛋白的同源性和2种炭疽菌(禾谷炭疽、希金斯炭疽菌)全基因组数据库的基础上,结合Blastp、蛋白质结构域分析和聚类分析3种方法,从禾谷炭疽菌和希金斯炭疽菌基因组数据库中找出18个与酿酒酵母菌同源的3类MAPK级联信号途径基因,并绘制出这2种炭疽菌MAPK级联信号途径简图,为深入研究炭疽菌MAPK级联信号途径基因生物学功能及其相关信号网络特点奠定基础。
基金supported by the National Natural Science Foundation of China (No.30571208)the Key Scientific and Technological Project of Hangzhou City (No.200432239),China
文摘Strawberry anthracnose, caused by Colletotrichum spp., is a major disease of cultivated strawberry. This study identifies 31 isolates of Colletotrichum spp. which cause strawberry anthracnose in Zhejiang Province and Shanghai City, China. Eleven isolates were identified as C. acutatum, 10 as C. gloeosporioides and 10 as C. fragariae based on morphological characteristics, phylogenetic and sequence analyses. Species-specific polymerase chain reaction (PCR) and enzyme digestion further confirmed the identification of the Colletotrichum spp., demonstrating that these three species are currently the causal agents of strawberry anthracnose in the studied regions. Based on analysis of rDNA internal transcribed spacers (ITS) sequences, sequences of all C. acutatum were identical, and little genetic variability was observed between C. fragariae and C. gloeosporioides. However, the conservative nature of the Mvnl specific site from isolates of C. gloeosporioides was confirmed, and this site could be used to differentiate C. gloeosporioides from C. fragariae.
文摘The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.
基金financially supported by the National Natural Science Foundation of China(31701882)the Competitive Nature Project of the Hubei Academy of Agricultural Sciences,China(2016JZXJH006)the Agricultural Science and Technology Innovation Center Program of Hubei Province,China(2016-620-000-001-014)
文摘The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution. Carbendazim has been widely used to control anthracnose caused by the C. gloeosporioides complex in China for more than 30 years and resistance to carbendazim has been reported in China. A total of 125 Colletotrichum isolates of strawberry and yam were collected from different geographical regions in Hubei Province, China. Approximately 52.8% of Colletotrichum spp. isolates showed resistance to carbendazim. The isolates tested in this study belong to four species, and the frequencies of resistant isolates differed across Colletotrichum species. Resistant isolates were found in C. siamense and C. fructicola. In contrast, all isolates of C. gloeosporioides and C. aenigma were sensitive to carbendazim. Highly carbendazim-resistant isolates harbored the E198A mutation in the β-tubulin 2 (TUB2) gene, whereas moderately carbendazim-resistant isolates harbored the F200Y mutation in the TUB2 gene. Carbendazim-sensitive Colletotrichum isolates in this study were not genetically similar enough to form a separate cluster from resistant isolates. The result of this study emphasizes the importance of knowing which Colletotrichum sp. is present, when strategies for disease control are made.