The hydrodynamics of turbulent flow through submerged flexible vegetation is investigated in a flume using acoustic Doppler velocimetery(ADV)measurements.The flow characteristics such as the energetics and momentum tr...The hydrodynamics of turbulent flow through submerged flexible vegetation is investigated in a flume using acoustic Doppler velocimetery(ADV)measurements.The flow characteristics such as the energetics and momentum transfer derived from convcntional spectral and quadrant analyses are considered as the flow encounters a finite vegetation patch.Consistent with numerous canopy flow experiments,a shear layer and coherent vortex structures near the canopy top emerge caused by Kelvin-Helmholtz instabilities after the flow equilibrates with the vegetated layer.These in stabilities are commonly attributed to velocity differences between non-vegetated and vegetated canopy layers in agreement with numerous experiments and simulations conducted on dense rigid canopies.The power-spectral density function for vertical velocity turbulent fluctuations at different downstream positions starting from the edge of the vegetation layer are also computed.For a preset water depth,the dominant dimensionless frequency is found to be surprisingly invariant around 0.027 despite large differences in vegetation densities.The ejection and sweep events significantly contribute to the Reynolds stresses near the top of the vegetation.The momentum flux carried by ejections is larger than its counterpart carried by the sweeps above the canopy top.However,the momentum flux carried by sweeps is larger below the top of the canopy.展开更多
Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate...Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.展开更多
Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase recovery techniques with real-time performance.Through data-driven approaches,these emerging techniques ...Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase recovery techniques with real-time performance.Through data-driven approaches,these emerging techniques have overcome some of the challenges associated with existing holographic image reconstruction methods while also minimizing the hardware requirements of holography.These recent advances open up a myriad of new opportunities for the use of coherent imaging systems in biomedical and engineering research and related applications.展开更多
This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to est...This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to estimate the location of a target. Compared with the TDOA-only method which needs two steps, the proposed method estimates the target position more directly. The constrained total least squares(CTLS) technique is applied in this approach. It achieves the Cramer–Rao lower bound(CRLB) when the parameter measurements are subject to small Gaussian-distributed errors. Performance analysis and the CRLB of this approach are also studied. Theory verifies that the ATDOA method gets a lower CRLB than the TDOA-only method with the same TDOA measuring error. It can also be seen that the position of the target affects estimating precision.At the same time, the locations of transmitters affect the precision and its gradient direction.Compared with the TDOA, the ATDOA method can obtain more precise target position estimation.Furthermore, the proposed method accomplishes target position estimation with a single transmitter,while the TDOA-only method needs at least four transmitters to get the target position. Furthermore,the transmitters' position errors also affect precision of estimation regularly.展开更多
A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-un...A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional explicit-implicit The treatment of equations. The third-order mixed scheme is employed the three-dimensional for time integration. non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.展开更多
The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant tem...The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant temperature anemometry of model IFA-300 and X-shaped hot-wire sensor probe in a wind tunnel. The longitudinal and normal velocity components have been decomposed into multi-scales by wavelet transform. The upward eject and downward sweep motions in a burst process of coherent structure have been detected by the maximum energy criterion of identifying burst event in wall turbulence through wavelet analysis. The relationships of phase-averaged waveforms among longitudinal velocity component, normal velocity component and Reynolds stress component have been studied through a correlation function method. The dynamics course of coherent structures and their effects on statistical characteristics of turbulent flows are analyzed.展开更多
Coherent beam combining of 107 beams has been demonstrated for the first time to the best of our knowledge.When the system was in closed loop,the pattern in far-field was stable and the fringe contrast was>96%.The ...Coherent beam combining of 107 beams has been demonstrated for the first time to the best of our knowledge.When the system was in closed loop,the pattern in far-field was stable and the fringe contrast was>96%.The impact of the dynamic tilt error,the piston error,and power inconsistency was theoretically analyzed.Meanwhile,the distribution law of dynamic tilt error was estimated and the correlation of the tilt dithering of different axis was analyzed statistically.The ratio of power in the central lobe was^22.5%.The phase residue error in the closed loop was~λ∕22,which was evaluated by the root-mean-square error of the signal generated from the photoelectric detector.展开更多
Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral cove...Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers(FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.展开更多
The interaction between a plane wall jet and a parallel offset jet is studied through the Large Eddy Simulation (LES). In order to compare with the related experimental data, the offset ratio is set to be 1.0 and th...The interaction between a plane wall jet and a parallel offset jet is studied through the Large Eddy Simulation (LES). In order to compare with the related experimental data, the offset ratio is set to be 1.0 and the Reynolds number Re is 1.0× 104 with respect to the jet height L and the exit velocity U0. The Finite Volume Method (FVM) with orthogonal-mesh (6.17× 106 nodes) is used to discretize governing equations. The large eddies are obtained directly, while the small eddies are simulated by using the Dynamic Smagorinsky-Lily Model (DSLM) and the Dynamic Kinetic energy Subgrid-scale Model (DKSM). Comparisons between computational results and experimental data show that the DKSM is especially effective in predicting the mean stream-wise velocity, the half-width of the velocity and the decay of the maximum velocity. The variations of the mean stream-wise velocity and the turbulent intensity at several positions are also obtained, and their distributions agree well with the measurements. The further analysis of dilute characteristics focuses on the tracer concentration, such as the distributions of the concentration (i.e., C / C0 or C / C,,), the boundary layer thickness 6c and the half-width of the concentration b., the decay of the maximum concentration ( C / Co) along the downstream direction. The turbulence mechanism is also analyzed in some aspects, such as the coherent structure, the correlation function and the Probability Density Function (PDF) of the fluctuating velocity. The results show that the interaction between the two jets is strong near the jet exit and they are fully merged after a certain distance.展开更多
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-laye...This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.展开更多
Broadband sound sink/absorber via a structure with deep sub-wavelength thickness is of great and continuing interest in physics and engineering communities.An intuitive technique extensively used is to combine compone...Broadband sound sink/absorber via a structure with deep sub-wavelength thickness is of great and continuing interest in physics and engineering communities.An intuitive technique extensively used is to combine components(resonators)with quasi-perfect absorption to piece together a broad absorbing band,but the requirement of quasi-perfect absorption substantially places a very strict restriction on the impedance and thickness of the components.Here,we theoretically and experimentally demonstrate that a compact broadband acoustic sink that quasi-perfectly absorbs broadband arriving sound waves can be achieved with coherently coupled‘‘weak resonances"(resonant sound absorbing systems with low absorption peaks).Although each component exhibits rather low absorption peak alone,via manipulating the coherent coupling effect among the components,they collectively provide a remarkably improved performance over a wide frequency range with a significantly compressed thickness.To illustrate the design principle,a hybrid metasurface utilizing the coaction of parallel and cascade couplings is presented,which possesses an average absorption coefficient of 0.957 in the quasi-perfect band(a>0:9)from 870 to 3224 Hz with a thickness of only 3.9 cm.Our results open new avenues for the development of novel and highly efficient acoustic absorbers against low frequency noise,and more essentially,suggest an efficient approach towards on-demand acoustic impedance engineering in broadband.展开更多
In this paper,we calculated the spatial local-averaged velocity strains along the streamwise direction at four spatial scales according to the concept of spatial local-averaged velocity structure function by using the...In this paper,we calculated the spatial local-averaged velocity strains along the streamwise direction at four spatial scales according to the concept of spatial local-averaged velocity structure function by using the three-dimensional three-component database of time series of velocity vector field in the turbulent boundary layer measured by tomographic time-resolved particle image velocimetry.An improved quadrant splitting method,based on the spatial local-averaged velocity strains together with a new conditional sampling phase average technique,was introduced as a criterion to detect the coherent structure topology.Furthermore,we used them to detect and extract the spatial topologies of fluctuating velocity and fluctuating vorticity whose center is a strong second-quadrant event(Q2) or a fourth-quadrant event(Q4).Results illustrate that a closer similarity of the multi-scale coherent structures is present in the wall-normal direction,compared to the one in the other two directions.The relationship among such topological coherent structures and Reynolds stress bursting events,as well as the fluctuating vorticity was discussed.When other burst events are surveyed(the first-quadrant event Q1 and the third-quadrant event Q3),a fascinating bursting period circularly occurs:Q4-S-Q2-Q3-Q2-Q1-Q4-S-Q2-Q3-Q2-Q1 in the center of such topological structures along the streamwise direction.In addition,the probability of the Q2 bursting event occurrence is slightly higher than that of the Q4 event occurrence.The spatial instable singularity that almost simultaneously appears together with typical Q2 or Q4 events has been observed,which is the main character of the mutual induction mechanism and vortex auto-generation mechanism explaining how the turbulence is produced and maintained.展开更多
The recent research progress of coherent beam combining of high power fiber lasers is reviewed. Key technologies like coherently combinable fiber laser, phase control of multiple beams and beam tilling are specially a...The recent research progress of coherent beam combining of high power fiber lasers is reviewed. Key technologies like coherently combinable fiber laser, phase control of multiple beams and beam tilling are specially analyzed. Prospects for single coherently combinable high power fiber amplifier, beam tilling and target-in-the-loop control for propagation in real atmosphere are presented.展开更多
Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field...Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor- tices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im- plemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y+=100. The ensem- ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla- tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(y) ac- cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down- stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51439007,11672213,11872285 and 51809286).
文摘The hydrodynamics of turbulent flow through submerged flexible vegetation is investigated in a flume using acoustic Doppler velocimetery(ADV)measurements.The flow characteristics such as the energetics and momentum transfer derived from convcntional spectral and quadrant analyses are considered as the flow encounters a finite vegetation patch.Consistent with numerous canopy flow experiments,a shear layer and coherent vortex structures near the canopy top emerge caused by Kelvin-Helmholtz instabilities after the flow equilibrates with the vegetated layer.These in stabilities are commonly attributed to velocity differences between non-vegetated and vegetated canopy layers in agreement with numerous experiments and simulations conducted on dense rigid canopies.The power-spectral density function for vertical velocity turbulent fluctuations at different downstream positions starting from the edge of the vegetation layer are also computed.For a preset water depth,the dominant dimensionless frequency is found to be surprisingly invariant around 0.027 despite large differences in vegetation densities.The ejection and sweep events significantly contribute to the Reynolds stresses near the top of the vegetation.The momentum flux carried by ejections is larger than its counterpart carried by the sweeps above the canopy top.However,the momentum flux carried by sweeps is larger below the top of the canopy.
基金The project was supported by the National Natural Science Foundation of China (10372090)the Doctoral Program of Higher Education of China (20030335001)
文摘Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.
文摘Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase recovery techniques with real-time performance.Through data-driven approaches,these emerging techniques have overcome some of the challenges associated with existing holographic image reconstruction methods while also minimizing the hardware requirements of holography.These recent advances open up a myriad of new opportunities for the use of coherent imaging systems in biomedical and engineering research and related applications.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA7031015)
文摘This paper investigates the problem of target position estimation with a single-observer passive coherent location(PCL) system. An approach that combines angle with time difference of arrival(ATDOA) is used to estimate the location of a target. Compared with the TDOA-only method which needs two steps, the proposed method estimates the target position more directly. The constrained total least squares(CTLS) technique is applied in this approach. It achieves the Cramer–Rao lower bound(CRLB) when the parameter measurements are subject to small Gaussian-distributed errors. Performance analysis and the CRLB of this approach are also studied. Theory verifies that the ATDOA method gets a lower CRLB than the TDOA-only method with the same TDOA measuring error. It can also be seen that the position of the target affects estimating precision.At the same time, the locations of transmitters affect the precision and its gradient direction.Compared with the TDOA, the ATDOA method can obtain more precise target position estimation.Furthermore, the proposed method accomplishes target position estimation with a single transmitter,while the TDOA-only method needs at least four transmitters to get the target position. Furthermore,the transmitters' position errors also affect precision of estimation regularly.
基金Project supported by the National Natural Science Foundation of China (Grant No:10272040) and Doctor Foundation of Education Ministry (Grant No:20050294003)
文摘A new method for direct numerical simulation of incompressible Navier-Stokes equations is studied in the paper. The compact finite difference and the non-linear terms upwind compact finite difference schemes on non-uniform meshes in x and y directions are developed respectively. With the Fourier spectral expansion in the spanwise direction, three-dimensional N-S equation are converted to a system of two-dimensional explicit-implicit The treatment of equations. The third-order mixed scheme is employed the three-dimensional for time integration. non-reflecting outflow boundary conditions is presented, which is important for the numerical simulations of the problem of transition in boundary layers, jets, and mixing layer. The numerical results indicate that high accuracy, stabilization and efficiency are achieved by the proposed numerical method. In addition, a theory model for the coherent structure in a laminar boundary layer is also proposed, based on which the numerical method is implemented to the non-linear evolution of coherent structure. It is found that the numerical results of the distribution of Reynolds stress, the formation of high shear layer, and the event of ejection and sweeping, match well with the observed characteristics of the coherent structures in a turbulence boundary layer.
基金the National Natural Science Foundation of China (Grant No. 10472081)the Program for New Century Excellent Talents in Universities of Ministry of Education of China, Tianjin Science and Technology Development Plan (Grant No. 06TXTJJC13800)
文摘The time sequence signals of instantaneous longitudinal and normal velocity components at different vertical locations in the turbulent boundary layer over a smooth flat plate have been finely measured by constant temperature anemometry of model IFA-300 and X-shaped hot-wire sensor probe in a wind tunnel. The longitudinal and normal velocity components have been decomposed into multi-scales by wavelet transform. The upward eject and downward sweep motions in a burst process of coherent structure have been detected by the maximum energy criterion of identifying burst event in wall turbulence through wavelet analysis. The relationships of phase-averaged waveforms among longitudinal velocity component, normal velocity component and Reynolds stress component have been studied through a correlation function method. The dynamics course of coherent structures and their effects on statistical characteristics of turbulent flows are analyzed.
基金National Natural Science Foundation of China(61705265,61705264)Innovative Research Groups of Hunan Province(2019JJ10005)Training Program for Excellent Young Innovators of Changsha(KQ1905051).
文摘Coherent beam combining of 107 beams has been demonstrated for the first time to the best of our knowledge.When the system was in closed loop,the pattern in far-field was stable and the fringe contrast was>96%.The impact of the dynamic tilt error,the piston error,and power inconsistency was theoretically analyzed.Meanwhile,the distribution law of dynamic tilt error was estimated and the correlation of the tilt dithering of different axis was analyzed statistically.The ratio of power in the central lobe was^22.5%.The phase residue error in the closed loop was~λ∕22,which was evaluated by the root-mean-square error of the signal generated from the photoelectric detector.
基金supported by the National Key Research and Development Program of China(No.2016YFA0401900)the National Natural Science Foundation of China(Nos.11475250 and11775293)+1 种基金the Young Elite Scientist Sponsorship Program of CAST(2015QNRC001)the Ten Thousand Talent Program
文摘Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers(FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.
基金supported by the Doctoral Program of Higher Education (Grant No. 20100141110028)the State Water Pollution Control and Management of Major Special Science and Technology (Grant No. 2008ZX07104-005)the National Natural Science Foundation of China (Grant Nos. 11172218,10972163,51079102)
文摘The interaction between a plane wall jet and a parallel offset jet is studied through the Large Eddy Simulation (LES). In order to compare with the related experimental data, the offset ratio is set to be 1.0 and the Reynolds number Re is 1.0× 104 with respect to the jet height L and the exit velocity U0. The Finite Volume Method (FVM) with orthogonal-mesh (6.17× 106 nodes) is used to discretize governing equations. The large eddies are obtained directly, while the small eddies are simulated by using the Dynamic Smagorinsky-Lily Model (DSLM) and the Dynamic Kinetic energy Subgrid-scale Model (DKSM). Comparisons between computational results and experimental data show that the DKSM is especially effective in predicting the mean stream-wise velocity, the half-width of the velocity and the decay of the maximum velocity. The variations of the mean stream-wise velocity and the turbulent intensity at several positions are also obtained, and their distributions agree well with the measurements. The further analysis of dilute characteristics focuses on the tracer concentration, such as the distributions of the concentration (i.e., C / C0 or C / C,,), the boundary layer thickness 6c and the half-width of the concentration b., the decay of the maximum concentration ( C / Co) along the downstream direction. The turbulence mechanism is also analyzed in some aspects, such as the coherent structure, the correlation function and the Probability Density Function (PDF) of the fluctuating velocity. The results show that the interaction between the two jets is strong near the jet exit and they are fully merged after a certain distance.
基金supported by the National Basic Research Program of China(2009CB724100)the National Natural Science Foundation of China(10632050,10872205,11072248).
文摘This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.
基金supported by the National Natural Science Foundation of China(11704284 and 11774265)the Young Elite Scientists Sponsorship by CAST(2018QNRC001)+2 种基金the Shanghai Science and Technology Committee(18JC1410900)the Shanghai Pujiang Program(17PJ1409000)the Stable Supporting Fund of Acoustic Science and Technology Laboratory.
文摘Broadband sound sink/absorber via a structure with deep sub-wavelength thickness is of great and continuing interest in physics and engineering communities.An intuitive technique extensively used is to combine components(resonators)with quasi-perfect absorption to piece together a broad absorbing band,but the requirement of quasi-perfect absorption substantially places a very strict restriction on the impedance and thickness of the components.Here,we theoretically and experimentally demonstrate that a compact broadband acoustic sink that quasi-perfectly absorbs broadband arriving sound waves can be achieved with coherently coupled‘‘weak resonances"(resonant sound absorbing systems with low absorption peaks).Although each component exhibits rather low absorption peak alone,via manipulating the coherent coupling effect among the components,they collectively provide a remarkably improved performance over a wide frequency range with a significantly compressed thickness.To illustrate the design principle,a hybrid metasurface utilizing the coaction of parallel and cascade couplings is presented,which possesses an average absorption coefficient of 0.957 in the quasi-perfect band(a>0:9)from 870 to 3224 Hz with a thickness of only 3.9 cm.Our results open new avenues for the development of novel and highly efficient acoustic absorbers against low frequency noise,and more essentially,suggest an efficient approach towards on-demand acoustic impedance engineering in broadband.
基金supported by the National Basic Research Program of China(Grant No.2012CB720101)the National Natural Science Foundation of China(Grant No.10832001)the Opening Subject of State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘In this paper,we calculated the spatial local-averaged velocity strains along the streamwise direction at four spatial scales according to the concept of spatial local-averaged velocity structure function by using the three-dimensional three-component database of time series of velocity vector field in the turbulent boundary layer measured by tomographic time-resolved particle image velocimetry.An improved quadrant splitting method,based on the spatial local-averaged velocity strains together with a new conditional sampling phase average technique,was introduced as a criterion to detect the coherent structure topology.Furthermore,we used them to detect and extract the spatial topologies of fluctuating velocity and fluctuating vorticity whose center is a strong second-quadrant event(Q2) or a fourth-quadrant event(Q4).Results illustrate that a closer similarity of the multi-scale coherent structures is present in the wall-normal direction,compared to the one in the other two directions.The relationship among such topological coherent structures and Reynolds stress bursting events,as well as the fluctuating vorticity was discussed.When other burst events are surveyed(the first-quadrant event Q1 and the third-quadrant event Q3),a fascinating bursting period circularly occurs:Q4-S-Q2-Q3-Q2-Q1-Q4-S-Q2-Q3-Q2-Q1 in the center of such topological structures along the streamwise direction.In addition,the probability of the Q2 bursting event occurrence is slightly higher than that of the Q4 event occurrence.The spatial instable singularity that almost simultaneously appears together with typical Q2 or Q4 events has been observed,which is the main character of the mutual induction mechanism and vortex auto-generation mechanism explaining how the turbulence is produced and maintained.
基金supported by the National Natural Science Foundation of China(Grant No.11274386)
文摘The recent research progress of coherent beam combining of high power fiber lasers is reviewed. Key technologies like coherently combinable fiber laser, phase control of multiple beams and beam tilling are specially analyzed. Prospects for single coherently combinable high power fiber amplifier, beam tilling and target-in-the-loop control for propagation in real atmosphere are presented.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10425207 and 10832001)
文摘Using Finite-Time Lyapunov Exponents (FTLE) method, Lagrangian coherent structures (LCSs) in a fully developed flat-plate turbulent boundary layer are successfully identified from a two-dimensional (2D) velocity field obtained by time-resolved 2D PIV measurement. The typical LCSs in the turbulent boundary layer are hairpin-like structures, which are characterized as legs of quasi-streamwise vor- tices extending deep into the near wall region with an inclination angle θ to the wall, and heads of the transverse vortex tube located in the outer region. Statistical analysis on the characteristic shape of typical LCS reveals that the probability density distribution of θ accords well with t-distribution in the near wall region, but presents a bimodal distribution with two peaks in the outer region, corresponding to the hairpin head and the hairpin neck, respectively. Spatial correlation analysis of FTLE field is im- plemented to get the ensemble-averaged inclination angle θ R of typical LCS. θ R first increases and then decreases along the wall-normal direction, similar to that of the mean value of θ. Moreover, the most probable value of θ saturates at y+=100 with the maximum value of about 24°, suggesting that the most likely position where hairpins transit from the neck to the head is located around y+=100. The ensem- ble-averaged convection velocity Uc of typical LCS is finally calculated from temporal-spatial correla- tion analysis of FTLE field. It is found that the wall-normal profile of the convection velocity Uc(y) ac- cords well with the local mean velocity profile U(y) beyond the buffer layer, evidencing that the down- stream convection of hairpins determines the transportation properties of the turbulent boundary layer in the log-region and beyond.