Owing to their unique physicochemical,optical and electrical properties,two-dimensional(2D)MoS_(2) cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydroge...Owing to their unique physicochemical,optical and electrical properties,two-dimensional(2D)MoS_(2) cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydrogen generation under suitable light irradiation.In this review,we first elaborated on the fundamental aspects of 2D MoS_(2) cocatalysts to include the structural design principles,synthesis strategies,strengths and challenges.Subsequently,we thoroughly highlighted and discussed the modification strategies of 2D MoS_(2) H2-evolution cocatalysts,including doping heteroatoms(e.g.metals,non-metals,and co-doping),designing interfacial coupling morphologies,controlling the physical properties(e.g.thickness,size,structural defects or pores),exposing the reactive facets or edge sites,constructing cocatalyst heterojunctions,engineering the interfacial bonds and confinement effects.In the future,the forefront challenges in understanding and in precise controlling of the active sites at molecular level or atomic level should be carefully studied,while various potential mechanisms of photogenerated-electrons interactions should be proposed.The applications of MoS_(2) cocatalyst in the overall water splitting are also expected.This review may offer new inspiration for designing and constructing novel and efficient MoS_(2)-based composite photocatalysts for highly efficient photocatalytic hydrogen evolution.展开更多
NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the mic...NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the microstructures of the g-C3N4 photocatalysts.In this study,a facile and low-temperature(80 ℃) impregnation method was developed to prepare NiS2/g-C3N4 photocatalysts.First,the g-C3N4 powders were processed by the hydrothermal method in order to introduce oxygen-containing functional groups(such as-OH and-C0NH-) to the surface of g-C3N4.Then,the Ni^2+ ions could be adsorbed near the g-C3N4 via strong electrostatic interaction between g-C3N4 and Ni^2+ ions upon the addition of Ni(NO3)2 solution.Finally,NiS2 nanoparticles were formed on the surface of g-C3N4 upon the addition of TAA.It was found that the NiS2 nanoparticles were solidly and homogeneously grafted on the surface of g-C3N4,resulting in greatly improved photocatalytic H2production.When the amount of NiS2 was 3 wt%,the resultant NiS2/g-C3N4 photocatalyst showed the highest H2 evolution rate(116.343 μmol h^-1 g^-1),which is significantly higher than that of the pure g-C3N4(3 μmol h^-1 g^-1).Moreover,the results of a recycling test for the NiS2/g-C3N4(3 wt%)sample showed that this sample could maintain a stable and effective photocatalytic H2-evolution performance under visible-light irradiation.Based on the above results,a possible mechanism of the improved photocatalytic performance was proposed for the presented NiS2/g-C3N4 photocatalysts,in which the photogenerated electrons of g-C3N4 can be rapidly transferred to the NiS2 nanoparticles via the close and continuous contact between them;then,the photogenerated electrons rapidly react with H2O adsorbed on the surface of NiS2,which has a surficial metallic character and high catalytic activity,to produce H2.Considering the mild and facile synthesis method,the presented low-cost and highly efficient NiS2-modified g-C3N4 photocatalysts would have great potential for 展开更多
The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists becau...The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists because of its "green" environmental characteristics.In this study,nanoscale Bi_2WO_6with a flower-like morphology was found to be a highly efficient photocatalyst in the catalytic oxidation of toluene and its derivatives using O_2 as the oxidant.The loading of Pd nanoparticles as a cocatalyst onto the flower-like Bi_2WO_6 was found to produce a significant enhancement in the catalytic activity.Mechanistic investigation showed that the superior performance of Pd/Bi_2WO_6 could be attributed to the improvement of both the reductive and oxidative abilities of Bi_2WO_6 by the loading of the cocatalyst.展开更多
基金the National Natural Science Foundation of China(Nos.21975084 and 51672089)the Guangdong Provincial Applied Science and Technology Research and Development Program(No.2017B020238005)+2 种基金the Ding Ying Talent Project of South China Agricultural University for their supportthe Hong Kong Research Grant Council(RGC)General Research Fund(No.GRF1305419)for financial supportthe National Natural Science Foundation of China(Nos.51972287 and 51502269)。
文摘Owing to their unique physicochemical,optical and electrical properties,two-dimensional(2D)MoS_(2) cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydrogen generation under suitable light irradiation.In this review,we first elaborated on the fundamental aspects of 2D MoS_(2) cocatalysts to include the structural design principles,synthesis strategies,strengths and challenges.Subsequently,we thoroughly highlighted and discussed the modification strategies of 2D MoS_(2) H2-evolution cocatalysts,including doping heteroatoms(e.g.metals,non-metals,and co-doping),designing interfacial coupling morphologies,controlling the physical properties(e.g.thickness,size,structural defects or pores),exposing the reactive facets or edge sites,constructing cocatalyst heterojunctions,engineering the interfacial bonds and confinement effects.In the future,the forefront challenges in understanding and in precise controlling of the active sites at molecular level or atomic level should be carefully studied,while various potential mechanisms of photogenerated-electrons interactions should be proposed.The applications of MoS_(2) cocatalyst in the overall water splitting are also expected.This review may offer new inspiration for designing and constructing novel and efficient MoS_(2)-based composite photocatalysts for highly efficient photocatalytic hydrogen evolution.
基金supported by the National Natural Science Foundation of China (21277107, 21477094, 51672203, 51472192)the Program for New Century Excellent Talents in University (NCET-13-0944)the Fundamental Research Funds for the Central Universities (WUT 2015IB002)~~
文摘NiS2 is a promising cocatalyst to improve the photocatalytic performance of g-C3N4 for the production of H2.However,the synthesis of the NiS2 cocatalyst usually requires harsh conditions,which risks destroying the microstructures of the g-C3N4 photocatalysts.In this study,a facile and low-temperature(80 ℃) impregnation method was developed to prepare NiS2/g-C3N4 photocatalysts.First,the g-C3N4 powders were processed by the hydrothermal method in order to introduce oxygen-containing functional groups(such as-OH and-C0NH-) to the surface of g-C3N4.Then,the Ni^2+ ions could be adsorbed near the g-C3N4 via strong electrostatic interaction between g-C3N4 and Ni^2+ ions upon the addition of Ni(NO3)2 solution.Finally,NiS2 nanoparticles were formed on the surface of g-C3N4 upon the addition of TAA.It was found that the NiS2 nanoparticles were solidly and homogeneously grafted on the surface of g-C3N4,resulting in greatly improved photocatalytic H2production.When the amount of NiS2 was 3 wt%,the resultant NiS2/g-C3N4 photocatalyst showed the highest H2 evolution rate(116.343 μmol h^-1 g^-1),which is significantly higher than that of the pure g-C3N4(3 μmol h^-1 g^-1).Moreover,the results of a recycling test for the NiS2/g-C3N4(3 wt%)sample showed that this sample could maintain a stable and effective photocatalytic H2-evolution performance under visible-light irradiation.Based on the above results,a possible mechanism of the improved photocatalytic performance was proposed for the presented NiS2/g-C3N4 photocatalysts,in which the photogenerated electrons of g-C3N4 can be rapidly transferred to the NiS2 nanoparticles via the close and continuous contact between them;then,the photogenerated electrons rapidly react with H2O adsorbed on the surface of NiS2,which has a surficial metallic character and high catalytic activity,to produce H2.Considering the mild and facile synthesis method,the presented low-cost and highly efficient NiS2-modified g-C3N4 photocatalysts would have great potential for
基金supported by the National Natural Science Foundation of China(21322202,21472187)the National Basic Research Program of China(2010CB833300)~~
文摘The selective oxidation of toluene and its derivatives is extremely important in the chemical industry.The use of photocatalysis in organic synthesis has attracted considerable attention among synthetic chemists because of its "green" environmental characteristics.In this study,nanoscale Bi_2WO_6with a flower-like morphology was found to be a highly efficient photocatalyst in the catalytic oxidation of toluene and its derivatives using O_2 as the oxidant.The loading of Pd nanoparticles as a cocatalyst onto the flower-like Bi_2WO_6 was found to produce a significant enhancement in the catalytic activity.Mechanistic investigation showed that the superior performance of Pd/Bi_2WO_6 could be attributed to the improvement of both the reductive and oxidative abilities of Bi_2WO_6 by the loading of the cocatalyst.