Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentration...Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentrations influenced the effect of elevated CO2 on the growth and nutrient uptake of tomato seedlings. Tomato (Hezuo 906) was grown in pots placed in controlled growth chambers and was subjected to ambient or elevated CO2 (360 or 720μL L-1) and four nutrient solutions of different strengths (1/2-, 1/4-, 1/8-, and 1/16-strength Japan Yamazaki nutrient solutions) in a completely randomized design. The results indicated that some agricultural characteristics of the tomato seedlings such as the plant height, stem thickness, total dry and fresh weights of the leaves, stems and roots, the G value (G value = total plant dry weight/seedling age), and the seedling vigor index (seedling vigor index = stem thickness/(plant height×total plant dry weight) increased with the elevated CO2, and the increases were strongly dependent on the nutrient solution concentrations, being greater with higher nutrient solution concentrations. The elevated CO2 did not alter the ratio of root to shoot. The total N, P, K, and C absorbed from all the solutions except P in the 1/8- and 1/16-strength nutrient solutions increased in the elevated CO2 treatment. These results demonstrate that the nutrient demands of the tomato seedlings increased at elevated CO2 concentrations.展开更多
在黄土高原半干旱雨养农业区薯麦轮作田地建立气象部门首家FACE系统(Free Air CO2 En-richment),即CO2浓度的控制和监测系统平台,由中国气象局兰州干旱气象研究所建在定西半干旱生态环境与试验基地。该平台由CO2气体供应装置、控制系统...在黄土高原半干旱雨养农业区薯麦轮作田地建立气象部门首家FACE系统(Free Air CO2 En-richment),即CO2浓度的控制和监测系统平台,由中国气象局兰州干旱气象研究所建在定西半干旱生态环境与试验基地。该平台由CO2气体供应装置、控制系统、释放系统3大部分组成,它是利用计算机网络系统对平台的CO2浓度进行监测控制,根据作物冠层高度的CO2浓度、风向、风速、昼夜的变化调节CO2气体的释放速度及方向,实现FACE圈的CO2浓度高于周围大气CO2浓度某一数值。该平台旨在研究雨养农业区CO2浓度升高及其与温度、水分、养分等偶合对农作物生长过程、生理生态特征、生物量、产量等的影响,为该地区适应未来不同气候变化情景提供科学依据。展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30230250).
文摘Exposing tomato seedlings to elevated CO2 concentrations may have potentially profound impacts on the tomato yield and quality. A growth chamber experiment was designed to estimate how different nutrient concentrations influenced the effect of elevated CO2 on the growth and nutrient uptake of tomato seedlings. Tomato (Hezuo 906) was grown in pots placed in controlled growth chambers and was subjected to ambient or elevated CO2 (360 or 720μL L-1) and four nutrient solutions of different strengths (1/2-, 1/4-, 1/8-, and 1/16-strength Japan Yamazaki nutrient solutions) in a completely randomized design. The results indicated that some agricultural characteristics of the tomato seedlings such as the plant height, stem thickness, total dry and fresh weights of the leaves, stems and roots, the G value (G value = total plant dry weight/seedling age), and the seedling vigor index (seedling vigor index = stem thickness/(plant height×total plant dry weight) increased with the elevated CO2, and the increases were strongly dependent on the nutrient solution concentrations, being greater with higher nutrient solution concentrations. The elevated CO2 did not alter the ratio of root to shoot. The total N, P, K, and C absorbed from all the solutions except P in the 1/8- and 1/16-strength nutrient solutions increased in the elevated CO2 treatment. These results demonstrate that the nutrient demands of the tomato seedlings increased at elevated CO2 concentrations.
文摘在黄土高原半干旱雨养农业区薯麦轮作田地建立气象部门首家FACE系统(Free Air CO2 En-richment),即CO2浓度的控制和监测系统平台,由中国气象局兰州干旱气象研究所建在定西半干旱生态环境与试验基地。该平台由CO2气体供应装置、控制系统、释放系统3大部分组成,它是利用计算机网络系统对平台的CO2浓度进行监测控制,根据作物冠层高度的CO2浓度、风向、风速、昼夜的变化调节CO2气体的释放速度及方向,实现FACE圈的CO2浓度高于周围大气CO2浓度某一数值。该平台旨在研究雨养农业区CO2浓度升高及其与温度、水分、养分等偶合对农作物生长过程、生理生态特征、生物量、产量等的影响,为该地区适应未来不同气候变化情景提供科学依据。