北方森林因其面积大、土壤碳储量高以及对全球暖化响应敏感而在全球碳平衡和气候系统中起着至关重要的作用。土壤呼吸和木质残体分解释放出的 CO2 通量是北方森林生态系统输入大气圈的最主要的碳源。量化这个通量并深刻理解其中的机理过...北方森林因其面积大、土壤碳储量高以及对全球暖化响应敏感而在全球碳平衡和气候系统中起着至关重要的作用。土壤呼吸和木质残体分解释放出的 CO2 通量是北方森林生态系统输入大气圈的最主要的碳源。量化这个通量并深刻理解其中的机理过程 ,是评价和预测北方森林在全球变化中的作用必不可少的内容。综述了北方森林生态系统土壤呼吸和木质残体分解释放出的 CO2 通量随生态系统类型及环境条件而变化的一般格局以及自养呼吸和异氧呼吸在土壤表面 CO2 通量中的相对贡献 ;分析了影响北方森林土壤呼吸的主要生物物理因子 ;讨论了该领域研究存在的问题和今后的研究方向 ;并强调木质残体分解释放出的 CO2 通量虽然在以往的森林生态系统碳平衡研究中常被忽略 。展开更多
海洋是一个巨大的碳库 ,具有潜在的缓冲大气 CO2 增加的能力 ,研究 CO2 在海洋中的转移和归宿 ,对于预测未来大气 CO2 含量乃至全球气候变化具有重要意义。综述了海洋 CO2 的研究现状 ,着重介绍海洋 CO2 的源与汇、海—气 CO2 通量的估...海洋是一个巨大的碳库 ,具有潜在的缓冲大气 CO2 增加的能力 ,研究 CO2 在海洋中的转移和归宿 ,对于预测未来大气 CO2 含量乃至全球气候变化具有重要意义。综述了海洋 CO2 的研究现状 ,着重介绍海洋 CO2 的源与汇、海—气 CO2 通量的估算以及海洋环流、生物泵和海洋生态在海洋碳循环中的作用 ,并对该研究领域的发展趋势进行了总结。展开更多
2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大...2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.展开更多
文摘北方森林因其面积大、土壤碳储量高以及对全球暖化响应敏感而在全球碳平衡和气候系统中起着至关重要的作用。土壤呼吸和木质残体分解释放出的 CO2 通量是北方森林生态系统输入大气圈的最主要的碳源。量化这个通量并深刻理解其中的机理过程 ,是评价和预测北方森林在全球变化中的作用必不可少的内容。综述了北方森林生态系统土壤呼吸和木质残体分解释放出的 CO2 通量随生态系统类型及环境条件而变化的一般格局以及自养呼吸和异氧呼吸在土壤表面 CO2 通量中的相对贡献 ;分析了影响北方森林土壤呼吸的主要生物物理因子 ;讨论了该领域研究存在的问题和今后的研究方向 ;并强调木质残体分解释放出的 CO2 通量虽然在以往的森林生态系统碳平衡研究中常被忽略 。
文摘海洋是一个巨大的碳库 ,具有潜在的缓冲大气 CO2 增加的能力 ,研究 CO2 在海洋中的转移和归宿 ,对于预测未来大气 CO2 含量乃至全球气候变化具有重要意义。综述了海洋 CO2 的研究现状 ,着重介绍海洋 CO2 的源与汇、海—气 CO2 通量的估算以及海洋环流、生物泵和海洋生态在海洋碳循环中的作用 ,并对该研究领域的发展趋势进行了总结。
文摘2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.