The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active ...The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active and durable fuel electrode.Here,we report a phase-transformed CoFe-Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(CoFe-SFM)fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(SFM)from a Sr_(2)Fe_(7/6)Mo_(0.5)Co_(1/3)O_(6)-δ(SFMCo)perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO_(2)conversion in RSOC.The CoFeSFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO_(2)conversion as demonstrated by the distribution of relaxation time(DRT)study and equivalent circuit model fitting analysis.Furthermore,an electrolyte-supported single cell is evaluated in the 2:1 CO-CO_(2)atmosphere at 800℃,which shows a peak power density of 259 mW cm^(-2)for CO oxidation and a current density of-0.453 A cm^(-2)at 1.3 V for CO_(2)reduction,which correspond to 3.079 and3.155 m L min-1cm^(-2)for the CO and CO_(2)conversion rates,respectively.More importantly,the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V.This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO_(2)reversible conversion.展开更多
本文报道了一种适应于高效稳定的CO-CO_(2)相互转化的可逆固体氧化物电池(RSOC)相变燃料电极.该燃料电极由FeRu双金属纳米催化剂和Ruddlesden-Popper相Pr_(0.8)Sr_(1.2)Fe_(1-x-y)Ru_(x)Mo_(y)O_(4)氧化物复合而成(FeRu@PSFRM).固体氧...本文报道了一种适应于高效稳定的CO-CO_(2)相互转化的可逆固体氧化物电池(RSOC)相变燃料电极.该燃料电极由FeRu双金属纳米催化剂和Ruddlesden-Popper相Pr_(0.8)Sr_(1.2)Fe_(1-x-y)Ru_(x)Mo_(y)O_(4)氧化物复合而成(FeRu@PSFRM).固体氧化物燃料电池(SOFC)模式时,单电池800℃时的最大输出功率密度可以达到170 W cm^(-2);而在固体氧化物电解池(SOEC)模式下,800℃、1.3 V时电解池的电解电流密度达到-0.256 A cm^(-2).在SOFC-SOEC循环测试过程中,RSOC中CO-CO_(2)相互转化过程经历了“活化-稳定-衰退”三个明显阶段.幸运的是,性能衰退的燃料电极可通过“原位氧化-还原”处理实现性能再生,有效提升该电池的使用寿命.研究结果表明,原位脱溶形成的FeRu@PSFRM材料是一种极具应用潜力的燃料电极候选材料,以期实现高效稳定的CO-CO_(2)相互转化.展开更多
基金financially supported by the National Natural Science Foundation (52002249,51402093 and 21706162)Guangdong Basic and Applied Basic Research Foundation (2019A1515110025 and 2017A 030313289)+3 种基金the Research Grant for Scientific Platform and Project of Guangdong Provincial Education Office (2019KTSCX151)China Postdoctoral Science Foundation (2020M682872)Shenzhen Government’s Plan of Science and Technology (JCYJ201803005125247308)Technical support from the Instrumental Analysis Center of Shenzhen University (Xili Campus) is also appreciated。
文摘The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active and durable fuel electrode.Here,we report a phase-transformed CoFe-Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(CoFe-SFM)fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(SFM)from a Sr_(2)Fe_(7/6)Mo_(0.5)Co_(1/3)O_(6)-δ(SFMCo)perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO_(2)conversion in RSOC.The CoFeSFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO_(2)conversion as demonstrated by the distribution of relaxation time(DRT)study and equivalent circuit model fitting analysis.Furthermore,an electrolyte-supported single cell is evaluated in the 2:1 CO-CO_(2)atmosphere at 800℃,which shows a peak power density of 259 mW cm^(-2)for CO oxidation and a current density of-0.453 A cm^(-2)at 1.3 V for CO_(2)reduction,which correspond to 3.079 and3.155 m L min-1cm^(-2)for the CO and CO_(2)conversion rates,respectively.More importantly,the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V.This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO_(2)reversible conversion.
基金supported by the start-up research funds from Wuhan Institute of Technology(K202201)Natural Science Foundation of Hubei Province of China(2024CFB755)+1 种基金National Natural Science Foundation of China(U21A20317)the Graduate Innovation Fund of Wuhan Institute of Technology(CX2023040)。
文摘本文报道了一种适应于高效稳定的CO-CO_(2)相互转化的可逆固体氧化物电池(RSOC)相变燃料电极.该燃料电极由FeRu双金属纳米催化剂和Ruddlesden-Popper相Pr_(0.8)Sr_(1.2)Fe_(1-x-y)Ru_(x)Mo_(y)O_(4)氧化物复合而成(FeRu@PSFRM).固体氧化物燃料电池(SOFC)模式时,单电池800℃时的最大输出功率密度可以达到170 W cm^(-2);而在固体氧化物电解池(SOEC)模式下,800℃、1.3 V时电解池的电解电流密度达到-0.256 A cm^(-2).在SOFC-SOEC循环测试过程中,RSOC中CO-CO_(2)相互转化过程经历了“活化-稳定-衰退”三个明显阶段.幸运的是,性能衰退的燃料电极可通过“原位氧化-还原”处理实现性能再生,有效提升该电池的使用寿命.研究结果表明,原位脱溶形成的FeRu@PSFRM材料是一种极具应用潜力的燃料电极候选材料,以期实现高效稳定的CO-CO_(2)相互转化.