After 2/3 transection of the right ninth thoracic spinal cord of an adult rat, a chitosan tube seeded with L-poly-lysine was implanted between the rostral and caudal end of the lesioned cord. Twelve months after the o...After 2/3 transection of the right ninth thoracic spinal cord of an adult rat, a chitosan tube seeded with L-poly-lysine was implanted between the rostral and caudal end of the lesioned cord. Twelve months after the operation, regeneration of myeli-nated and non-myelinated axons and new blood vessels were observed along the wall of the chitosan tube implanted under an electron microscope. Somatosensory evoked potentials (SEP) could be consistently recorded from the left somatosensory cortex following electrical stimulation of the right hind limb, while transcranial magnetic stimulation of the left motor cortex could also evoke motor activity from the right hind limb. The present result suggests that implanted chitosan tube might be useful in regenera-tion of injured nerve fibers of the spinal cord resulting in a long-term restoration of motor functions.展开更多
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone(SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuri...There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone(SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuries has been hindered by the lack of sensitive approaches to study the cellular composition of this niche. Here we review progress being made in deciphering the cells of the SVZ gleaned from the use of a recently designed flow cytometry panel that allows SVZ cells to be parsed into multiple subsets of progenitors as well as putative stem cells. We review how this approach has begun to unmask both the heterogeneity of SVZ cells as well as the dynamic shifts in cell populations with neonatal and pediatric brain injuries. We also discuss how flow cytometric analyses also have begun to reveal how specific cytokines, such as Leukemia inhibitory factor are coordinating SVZ responses to injury.展开更多
基金supported by the National Natural Science Foundation of China(No.30170487,30370469)the Major State Basic Research Development Program of China(973 Program)(No.2003CB515300).
基金supported by the National Natural Science Foundation of China(Grant No.30330220)Natural Key Foundation Program of Beijing(Grant No.7041002),National 863 Project(Grant No.2005AA205)Key Project of Science and Technology Department of Beijing,China(Grant No.H020920040430).
文摘After 2/3 transection of the right ninth thoracic spinal cord of an adult rat, a chitosan tube seeded with L-poly-lysine was implanted between the rostral and caudal end of the lesioned cord. Twelve months after the operation, regeneration of myeli-nated and non-myelinated axons and new blood vessels were observed along the wall of the chitosan tube implanted under an electron microscope. Somatosensory evoked potentials (SEP) could be consistently recorded from the left somatosensory cortex following electrical stimulation of the right hind limb, while transcranial magnetic stimulation of the left motor cortex could also evoke motor activity from the right hind limb. The present result suggests that implanted chitosan tube might be useful in regenera-tion of injured nerve fibers of the spinal cord resulting in a long-term restoration of motor functions.
文摘There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone(SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuries has been hindered by the lack of sensitive approaches to study the cellular composition of this niche. Here we review progress being made in deciphering the cells of the SVZ gleaned from the use of a recently designed flow cytometry panel that allows SVZ cells to be parsed into multiple subsets of progenitors as well as putative stem cells. We review how this approach has begun to unmask both the heterogeneity of SVZ cells as well as the dynamic shifts in cell populations with neonatal and pediatric brain injuries. We also discuss how flow cytometric analyses also have begun to reveal how specific cytokines, such as Leukemia inhibitory factor are coordinating SVZ responses to injury.